rajsinghparihar
commited on
Commit
·
93762d1
1
Parent(s):
862ba62
first commit: doc-info-ext v0.0.1
Browse files- .gitignore +168 -0
- README.md +6 -6
- app.py +136 -0
- examples/Commerce Bank Statement Sample.pdf +0 -0
- examples/Salary-Slip-pdf.pdf +0 -0
- prompts.py +17 -0
- rag.py +57 -0
- requirements.txt +7 -0
.gitignore
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
*.zip
|
163 |
+
*.xlsx
|
164 |
+
*.png
|
165 |
+
*.ipynb
|
166 |
+
*.DS_Store
|
167 |
+
*.db
|
168 |
+
*.tar
|
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
-
title: Document Information
|
3 |
emoji: 🔥
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
|
|
1 |
---
|
2 |
+
title: Document Information Extractor
|
3 |
emoji: 🔥
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.3.1
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from rag import RAG, ServiceContextModule
|
3 |
+
from llama_index.core import set_global_service_context
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import json
|
6 |
+
from prompts import general_prompt
|
7 |
+
from gradio_pdf import PDF
|
8 |
+
import requests
|
9 |
+
|
10 |
+
service_context_module = None
|
11 |
+
current_model = None
|
12 |
+
|
13 |
+
|
14 |
+
def initialize(api_key, model_name):
|
15 |
+
global service_context_module, current_model
|
16 |
+
gr.Info("Initializing app")
|
17 |
+
load_dotenv(override=True)
|
18 |
+
url = "https://api.groq.com/openai/v1/models"
|
19 |
+
headers = {
|
20 |
+
"Authorization": f"Bearer {api_key}",
|
21 |
+
"Content-Type": "application/json",
|
22 |
+
}
|
23 |
+
try:
|
24 |
+
response = requests.get(url, headers=headers)
|
25 |
+
data = response.json()
|
26 |
+
models = [model["id"] for model in data["data"]]
|
27 |
+
|
28 |
+
except Exception:
|
29 |
+
gr.Error("Invalid API KEY")
|
30 |
+
return gr.update(choices=[])
|
31 |
+
|
32 |
+
if not service_context_module or current_model != model_name:
|
33 |
+
service_context_module = ServiceContextModule(api_key, model_name)
|
34 |
+
current_model = model_name
|
35 |
+
gr.Info("App started")
|
36 |
+
set_global_service_context(
|
37 |
+
service_context=service_context_module.service_context
|
38 |
+
)
|
39 |
+
else:
|
40 |
+
gr.Info("App is already running")
|
41 |
+
|
42 |
+
return gr.update(choices=models)
|
43 |
+
|
44 |
+
|
45 |
+
def process_document(file, query):
|
46 |
+
if file.endswith(".pdf"):
|
47 |
+
return process_pdf(file, query=query)
|
48 |
+
else:
|
49 |
+
return "Unsupported file format"
|
50 |
+
|
51 |
+
|
52 |
+
def postprocess_json_string(json_string: str) -> dict:
|
53 |
+
json_string = json_string.replace("'", '"')
|
54 |
+
json_string = json_string[json_string.rfind("{") : json_string.rfind("}") + 1]
|
55 |
+
try:
|
56 |
+
json_data = json.loads(json_string)
|
57 |
+
except Exception as e:
|
58 |
+
print("Error parsing output, invalid json format", e)
|
59 |
+
return json_data
|
60 |
+
|
61 |
+
|
62 |
+
def process_pdf(file, query):
|
63 |
+
rag_module = RAG(filepaths=[file])
|
64 |
+
fields = [field for field in query.split(",")]
|
65 |
+
formatted_prompt = general_prompt(fields=fields)
|
66 |
+
response = rag_module.run_query_engine(prompt=formatted_prompt)
|
67 |
+
extracted_json = postprocess_json_string(json_string=response)
|
68 |
+
return extracted_json
|
69 |
+
|
70 |
+
|
71 |
+
with gr.Blocks(title="Document Information Extractor.") as app:
|
72 |
+
gr.Markdown(
|
73 |
+
value="""
|
74 |
+
# Welcome to Document Information Extractor.
|
75 |
+
Created by [@rajsinghparihar](https://huggingface.co/rajsinghparihar) for extracting useful information from pdf documents like invoices, salary slips, etc.
|
76 |
+
## Usage:
|
77 |
+
- In the Init Section, Enter your `GROQ_API_KEY` in the corresponding labeled textbox.
|
78 |
+
- choose the model from the list of available models.
|
79 |
+
- click `Initialize` to start the app.
|
80 |
+
|
81 |
+
- In the app section, you can upload a document (pdf files: currently works for readable pdfs only, will add ocr functionality later)
|
82 |
+
- Enter the entities you wanna extract as a comma seperated string. (check the examples for more info)
|
83 |
+
- Click Submit to see the extracted entities as a JSON object.
|
84 |
+
"""
|
85 |
+
)
|
86 |
+
with gr.Tab(label="Init Section") as init_tab:
|
87 |
+
with gr.Row():
|
88 |
+
api_key = gr.Text(label="Enter your Groq API KEY", type="password")
|
89 |
+
available_models = gr.Dropdown(
|
90 |
+
label="Choose your LLM",
|
91 |
+
choices=[
|
92 |
+
"gemma-7b-it",
|
93 |
+
"llama3-70b-8192",
|
94 |
+
"llama3-8b-8192",
|
95 |
+
"mixtral-8x7b-32768",
|
96 |
+
"whisper-large-v3",
|
97 |
+
],
|
98 |
+
)
|
99 |
+
init_btn = gr.Button(value="Initialize")
|
100 |
+
init_btn.click(
|
101 |
+
fn=initialize,
|
102 |
+
inputs=[api_key, available_models],
|
103 |
+
outputs=available_models,
|
104 |
+
)
|
105 |
+
with gr.Tab(label="App Section") as app_tab:
|
106 |
+
iface = gr.Interface(
|
107 |
+
fn=process_document,
|
108 |
+
inputs=[
|
109 |
+
PDF(label="Document"),
|
110 |
+
gr.Text(
|
111 |
+
label="Entities you wanna extract in comma separated string format"
|
112 |
+
),
|
113 |
+
],
|
114 |
+
outputs=gr.JSON(label="Extracted Entities"),
|
115 |
+
description="Upload a PDF document and extract specified entities from it.",
|
116 |
+
examples=[
|
117 |
+
[
|
118 |
+
"examples/Commerce Bank Statement Sample.pdf",
|
119 |
+
"Customer Name, Account Number, Statement Date, Ending Balance, Total Deposits, Checks Paid",
|
120 |
+
],
|
121 |
+
[
|
122 |
+
"examples/Salary-Slip-pdf.pdf",
|
123 |
+
"Employee Name, Bank Name, Location, Total Salary, Total Deductions",
|
124 |
+
],
|
125 |
+
],
|
126 |
+
)
|
127 |
+
gr.Markdown("""
|
128 |
+
## Pros of LLMs as information extractors over current extraction solutions:
|
129 |
+
- LLMs are able to understand the scope of the problem from the context and are more robust to typos or extraction failure
|
130 |
+
|
131 |
+
## Cons
|
132 |
+
- Higher Inference Cost
|
133 |
+
- Can't use free APIs for Sensitive documents.
|
134 |
+
""")
|
135 |
+
|
136 |
+
app.launch(server_name="0.0.0.0", server_port=7860)
|
examples/Commerce Bank Statement Sample.pdf
ADDED
Binary file (55.1 kB). View file
|
|
examples/Salary-Slip-pdf.pdf
ADDED
Binary file (38.3 kB). View file
|
|
prompts.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import outlines
|
2 |
+
|
3 |
+
|
4 |
+
@outlines.prompt
|
5 |
+
def general_prompt(fields):
|
6 |
+
"""
|
7 |
+
You are an entity extractor.
|
8 |
+
Using the information in the provided documents, use your deep understanding of documents and complete the following tasks.
|
9 |
+
1. Answer the question, What are the values of the following, {{ fields }}?
|
10 |
+
2. Print the answers against each field in a step by step approach.
|
11 |
+
3. After you have all the answers ready, Please format the response in JSON format, with these fields as keys and their answers as values.
|
12 |
+
|
13 |
+
Make sure to follow the Instructions below.
|
14 |
+
1. In the records, make sure to only include the values of the descriptors without any descriptor names.
|
15 |
+
2. Do NOT Create a Nested JSON response. If response is Nested, format it to a simpler JSON format.
|
16 |
+
2. Avoid keywords like <<SYS>> or [SYS] or [INST] in the final response.
|
17 |
+
"""
|
rag.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_index.core import (
|
2 |
+
VectorStoreIndex,
|
3 |
+
SimpleDirectoryReader,
|
4 |
+
get_response_synthesizer,
|
5 |
+
ServiceContext,
|
6 |
+
)
|
7 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
8 |
+
from llama_index.core.postprocessor import SentenceTransformerRerank
|
9 |
+
from typing import Optional, List
|
10 |
+
from llama_index.llms.groq import Groq
|
11 |
+
|
12 |
+
|
13 |
+
class RAG:
|
14 |
+
def __init__(
|
15 |
+
self, filepaths: List[str], rerank: Optional[SentenceTransformerRerank] = None
|
16 |
+
) -> None:
|
17 |
+
documents = SimpleDirectoryReader(input_files=filepaths).load_data()
|
18 |
+
response_synthesizer = get_response_synthesizer(
|
19 |
+
response_mode="tree_summarize",
|
20 |
+
use_async=True,
|
21 |
+
)
|
22 |
+
self.index = VectorStoreIndex.from_documents(
|
23 |
+
documents=documents,
|
24 |
+
response_synthesizer=response_synthesizer,
|
25 |
+
)
|
26 |
+
if not rerank:
|
27 |
+
self.query_engine = self.index.as_query_engine(
|
28 |
+
response_mode="tree_summarize",
|
29 |
+
use_async=True,
|
30 |
+
streaming=True,
|
31 |
+
similarity_top_k=10,
|
32 |
+
)
|
33 |
+
else:
|
34 |
+
self.query_engine = self.index.as_query_engine(
|
35 |
+
response_mode="tree_summarize",
|
36 |
+
use_async=True,
|
37 |
+
streaming=True,
|
38 |
+
similarity_top_k=10,
|
39 |
+
node_postprocessors=[rerank],
|
40 |
+
)
|
41 |
+
|
42 |
+
def run_query_engine(self, prompt):
|
43 |
+
response = self.query_engine.query(prompt)
|
44 |
+
response.print_response_stream()
|
45 |
+
return str(response)
|
46 |
+
|
47 |
+
|
48 |
+
class ServiceContextModule:
|
49 |
+
def __init__(self, api_key, model_name) -> None:
|
50 |
+
self._llm = Groq(model=model_name, api_key=api_key)
|
51 |
+
self._embedding_model = HuggingFaceEmbedding(
|
52 |
+
"Snowflake/snowflake-arctic-embed-m-long", trust_remote_code=True
|
53 |
+
)
|
54 |
+
self.service_context = ServiceContext.from_defaults(
|
55 |
+
llm=self._llm,
|
56 |
+
embed_model=self._embedding_model,
|
57 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
llama-index
|
3 |
+
llama-index-llms-groq
|
4 |
+
llama-index-embeddings-huggingface
|
5 |
+
einops
|
6 |
+
outlines
|
7 |
+
gradio_pdf
|