File size: 8,389 Bytes
f8946c1
17d0a32
f38929b
 
 
 
 
 
 
 
 
 
 
17d0a32
b0409b9
dd648bd
f38929b
 
 
 
 
 
 
 
 
 
 
 
8dd4d48
 
f38929b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40bd857
f38929b
 
7842cf0
f38929b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2712d99
f38929b
 
 
 
 
 
 
 
 
b2fba01
f38929b
 
 
 
 
f8946c1
 
f38929b
 
 
 
 
 
 
 
 
d0703ef
f38929b
 
 
 
 
 
 
 
 
 
17d0a32
f38929b
 
 
 
 
 
 
 
 
 
17d0a32
f38929b
 
 
 
17d0a32
f38929b
 
 
 
 
 
 
 
 
d0703ef
f38929b
 
 
 
 
 
 
 
 
 
17d0a32
f38929b
 
 
 
 
 
 
 
 
 
17d0a32
f38929b
 
 
 
17d0a32
f38929b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from toolbox import update_ui, promote_file_to_downloadzone
from toolbox import CatchException, report_exception, write_history_to_file
fast_debug = False

class PaperFileGroup():
    def __init__(self):
        self.file_paths = []
        self.file_contents = []
        self.sp_file_contents = []
        self.sp_file_index = []
        self.sp_file_tag = []

        # count_token
        from request_llms.bridge_all import model_info
        enc = model_info["gpt-3.5-turbo"]['tokenizer']
        def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
        self.get_token_num = get_token_num

    def run_file_split(self, max_token_limit=1900):
        """
        将长文本分离开来
        """
        for index, file_content in enumerate(self.file_contents):
            if self.get_token_num(file_content) < max_token_limit:
                self.sp_file_contents.append(file_content)
                self.sp_file_index.append(index)
                self.sp_file_tag.append(self.file_paths[index])
            else:
                from crazy_functions.pdf_fns.breakdown_txt import breakdown_text_to_satisfy_token_limit
                segments = breakdown_text_to_satisfy_token_limit(file_content, max_token_limit)
                for j, segment in enumerate(segments):
                    self.sp_file_contents.append(segment)
                    self.sp_file_index.append(index)
                    self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex")

        print('Segmentation: done')

def 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'):
    import time, os, re
    from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency

    #  <-------- 读取Latex文件,删除其中的所有注释 ----------> 
    pfg = PaperFileGroup()

    for index, fp in enumerate(file_manifest):
        with open(fp, 'r', encoding='utf-8', errors='replace') as f:
            file_content = f.read()
            # 定义注释的正则表达式
            comment_pattern = r'(?<!\\)%.*'
            # 使用正则表达式查找注释,并替换为空字符串
            clean_tex_content = re.sub(comment_pattern, '', file_content)
            # 记录删除注释后的文本
            pfg.file_paths.append(fp)
            pfg.file_contents.append(clean_tex_content)

    #  <-------- 拆分过长的latex文件 ----------> 
    pfg.run_file_split(max_token_limit=1024)
    n_split = len(pfg.sp_file_contents)

    #  <-------- 抽取摘要 ----------> 
    # if language == 'en':
    #     abs_extract_inputs = f"Please write an abstract for this paper"

    # # 单线,获取文章meta信息
    # paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
    #     inputs=abs_extract_inputs,
    #     inputs_show_user=f"正在抽取摘要信息。",
    #     llm_kwargs=llm_kwargs,
    #     chatbot=chatbot, history=[],
    #     sys_prompt="Your job is to collect information from materials。",
    # )

    #  <-------- 多线程润色开始 ----------> 
    if language == 'en->zh':
        inputs_array = ["Below is a section from an English academic paper, translate it into Chinese, do not modify any latex command such as \section, \cite and equations:" + 
                        f"\n\n{frag}" for frag in pfg.sp_file_contents]
        inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
        sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]
    elif language == 'zh->en':
        inputs_array = [f"Below is a section from a Chinese academic paper, translate it into English, do not modify any latex command such as \section, \cite and equations:" + 
                        f"\n\n{frag}" for frag in pfg.sp_file_contents]
        inputs_show_user_array = [f"翻译 {f}" for f in pfg.sp_file_tag]
        sys_prompt_array = ["You are a professional academic paper translator." for _ in range(n_split)]

    gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
        inputs_array=inputs_array,
        inputs_show_user_array=inputs_show_user_array,
        llm_kwargs=llm_kwargs,
        chatbot=chatbot,
        history_array=[[""] for _ in range(n_split)],
        sys_prompt_array=sys_prompt_array,
        # max_workers=5,  # OpenAI所允许的最大并行过载
        scroller_max_len = 80
    )

    #  <-------- 整理结果,退出 ----------> 
    create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md"
    res = write_history_to_file(gpt_response_collection, create_report_file_name)
    promote_file_to_downloadzone(res, chatbot=chatbot)
    history = gpt_response_collection
    chatbot.append((f"{fp}完成了吗?", res))
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面





@CatchException
def Latex英译中(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
    # 基本信息:功能、贡献者
    chatbot.append([
        "函数插件功能?",
        "对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"])
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

    # 尝试导入依赖,如果缺少依赖,则给出安装建议
    try:
        import tiktoken
    except:
        report_exception(chatbot, history,
                         a=f"解析项目: {txt}",
                         b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return
    history = []    # 清空历史,以免输入溢出
    import glob, os
    if os.path.exists(txt):
        project_folder = txt
    else:
        if txt == "": txt = '空空如也的输入栏'
        report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return
    file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
    if len(file_manifest) == 0:
        report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return
    yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en->zh')





@CatchException
def Latex中译英(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
    # 基本信息:功能、贡献者
    chatbot.append([
        "函数插件功能?",
        "对整个Latex项目进行翻译。函数插件贡献者: Binary-Husky"])
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

    # 尝试导入依赖,如果缺少依赖,则给出安装建议
    try:
        import tiktoken
    except:
        report_exception(chatbot, history,
                         a=f"解析项目: {txt}",
                         b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return
    history = []    # 清空历史,以免输入溢出
    import glob, os
    if os.path.exists(txt):
        project_folder = txt
    else:
        if txt == "": txt = '空空如也的输入栏'
        report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return
    file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)]
    if len(file_manifest) == 0:
        report_exception(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return
    yield from 多文件翻译(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh->en')