File size: 10,780 Bytes
f238a34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from typing import Any, Dict, List, Optional, Tuple, Type, Union

import gym
import numpy as np
import torch as th
from torch.nn import functional as F

from stable_baselines3.common import logger
from stable_baselines3.common.off_policy_algorithm import OffPolicyAlgorithm
from stable_baselines3.common.preprocessing import maybe_transpose
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import get_linear_fn, is_vectorized_observation, polyak_update
from stable_baselines3.dqn.policies import DQNPolicy


class DQN(OffPolicyAlgorithm):
    """
    Deep Q-Network (DQN)

    Paper: https://arxiv.org/abs/1312.5602, https://www.nature.com/articles/nature14236
    Default hyperparameters are taken from the nature paper,
    except for the optimizer and learning rate that were taken from Stable Baselines defaults.

    :param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
    :param env: The environment to learn from (if registered in Gym, can be str)
    :param learning_rate: The learning rate, it can be a function
        of the current progress remaining (from 1 to 0)
    :param buffer_size: size of the replay buffer
    :param learning_starts: how many steps of the model to collect transitions for before learning starts
    :param batch_size: Minibatch size for each gradient update
    :param tau: the soft update coefficient ("Polyak update", between 0 and 1) default 1 for hard update
    :param gamma: the discount factor
    :param train_freq: Update the model every ``train_freq`` steps. Alternatively pass a tuple of frequency and unit
        like ``(5, "step")`` or ``(2, "episode")``.
    :param gradient_steps: How many gradient steps to do after each rollout (see ``train_freq``)
        Set to ``-1`` means to do as many gradient steps as steps done in the environment
        during the rollout.
    :param optimize_memory_usage: Enable a memory efficient variant of the replay buffer
        at a cost of more complexity.
        See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195
    :param target_update_interval: update the target network every ``target_update_interval``
        environment steps.
    :param exploration_fraction: fraction of entire training period over which the exploration rate is reduced
    :param exploration_initial_eps: initial value of random action probability
    :param exploration_final_eps: final value of random action probability
    :param max_grad_norm: The maximum value for the gradient clipping
    :param tensorboard_log: the log location for tensorboard (if None, no logging)
    :param create_eval_env: Whether to create a second environment that will be
        used for evaluating the agent periodically. (Only available when passing string for the environment)
    :param policy_kwargs: additional arguments to be passed to the policy on creation
    :param verbose: the verbosity level: 0 no output, 1 info, 2 debug
    :param seed: Seed for the pseudo random generators
    :param device: Device (cpu, cuda, ...) on which the code should be run.
        Setting it to auto, the code will be run on the GPU if possible.
    :param _init_setup_model: Whether or not to build the network at the creation of the instance
    """

    def __init__(
        self,
        policy: Union[str, Type[DQNPolicy]],
        env: Union[GymEnv, str],
        learning_rate: Union[float, Schedule] = 1e-4,
        buffer_size: int = 1000000,
        learning_starts: int = 50000,
        batch_size: Optional[int] = 32,
        tau: float = 1.0,
        gamma: float = 0.99,
        train_freq: Union[int, Tuple[int, str]] = 4,
        gradient_steps: int = 1,
        optimize_memory_usage: bool = False,
        target_update_interval: int = 10000,
        exploration_fraction: float = 0.1,
        exploration_initial_eps: float = 1.0,
        exploration_final_eps: float = 0.05,
        max_grad_norm: float = 10,
        tensorboard_log: Optional[str] = None,
        create_eval_env: bool = False,
        policy_kwargs: Optional[Dict[str, Any]] = None,
        verbose: int = 0,
        seed: Optional[int] = None,
        device: Union[th.device, str] = "auto",
        _init_setup_model: bool = True,
    ):

        super(DQN, self).__init__(
            policy,
            env,
            DQNPolicy,
            learning_rate,
            buffer_size,
            learning_starts,
            batch_size,
            tau,
            gamma,
            train_freq,
            gradient_steps,
            action_noise=None,  # No action noise
            policy_kwargs=policy_kwargs,
            tensorboard_log=tensorboard_log,
            verbose=verbose,
            device=device,
            create_eval_env=create_eval_env,
            seed=seed,
            sde_support=False,
            optimize_memory_usage=optimize_memory_usage,
            supported_action_spaces=(gym.spaces.Discrete,),
        )

        self.exploration_initial_eps = exploration_initial_eps
        self.exploration_final_eps = exploration_final_eps
        self.exploration_fraction = exploration_fraction
        self.target_update_interval = target_update_interval
        self.max_grad_norm = max_grad_norm
        # "epsilon" for the epsilon-greedy exploration
        self.exploration_rate = 0.0
        # Linear schedule will be defined in `_setup_model()`
        self.exploration_schedule = None
        self.q_net, self.q_net_target = None, None

        if _init_setup_model:
            self._setup_model()

    def _setup_model(self) -> None:
        super(DQN, self)._setup_model()
        self._create_aliases()
        self.exploration_schedule = get_linear_fn(
            self.exploration_initial_eps, self.exploration_final_eps, self.exploration_fraction
        )

    def _create_aliases(self) -> None:
        self.q_net = self.policy.q_net
        self.q_net_target = self.policy.q_net_target

    def _on_step(self) -> None:
        """
        Update the exploration rate and target network if needed.
        This method is called in ``collect_rollouts()`` after each step in the environment.
        """
        if self.num_timesteps % self.target_update_interval == 0:
            polyak_update(self.q_net.parameters(), self.q_net_target.parameters(), self.tau)

        self.exploration_rate = self.exploration_schedule(self._current_progress_remaining)
        logger.record("rollout/exploration rate", self.exploration_rate)

    def train(self, gradient_steps: int, batch_size: int = 100) -> None:
        # Update learning rate according to schedule
        self._update_learning_rate(self.policy.optimizer)

        losses = []
        for _ in range(gradient_steps):
            # Sample replay buffer
            replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env)

            with th.no_grad():
                # Compute the next Q-values using the target network
                next_q_values = self.q_net_target(replay_data.next_observations)
                # Follow greedy policy: use the one with the highest value
                next_q_values, _ = next_q_values.max(dim=1)
                # Avoid potential broadcast issue
                next_q_values = next_q_values.reshape(-1, 1)
                # 1-step TD target
                target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values

            # Get current Q-values estimates
            current_q_values = self.q_net(replay_data.observations)

            # Retrieve the q-values for the actions from the replay buffer
            current_q_values = th.gather(current_q_values, dim=1, index=replay_data.actions.long())

            # Compute Huber loss (less sensitive to outliers)
            loss = F.smooth_l1_loss(current_q_values, target_q_values)
            losses.append(loss.item())

            # Optimize the policy
            self.policy.optimizer.zero_grad()
            loss.backward()
            # Clip gradient norm
            th.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
            self.policy.optimizer.step()

        # Increase update counter
        self._n_updates += gradient_steps

        logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
        logger.record("train/loss", np.mean(losses))

    def predict(
        self,
        observation: np.ndarray,
        state: Optional[np.ndarray] = None,
        mask: Optional[np.ndarray] = None,
        deterministic: bool = False,
    ) -> Tuple[np.ndarray, Optional[np.ndarray]]:
        """
        Overrides the base_class predict function to include epsilon-greedy exploration.

        :param observation: the input observation
        :param state: The last states (can be None, used in recurrent policies)
        :param mask: The last masks (can be None, used in recurrent policies)
        :param deterministic: Whether or not to return deterministic actions.
        :return: the model's action and the next state
            (used in recurrent policies)
        """
        if not deterministic and np.random.rand() < self.exploration_rate:
            if is_vectorized_observation(maybe_transpose(observation, self.observation_space), self.observation_space):
                n_batch = observation.shape[0]
                action = np.array([self.action_space.sample() for _ in range(n_batch)])
            else:
                action = np.array(self.action_space.sample())
        else:
            action, state = self.policy.predict(observation, state, mask, deterministic)
        return action, state

    def learn(
        self,
        total_timesteps: int,
        callback: MaybeCallback = None,
        log_interval: int = 4,
        eval_env: Optional[GymEnv] = None,
        eval_freq: int = -1,
        n_eval_episodes: int = 5,
        tb_log_name: str = "DQN",
        eval_log_path: Optional[str] = None,
        reset_num_timesteps: bool = True,
    ) -> OffPolicyAlgorithm:

        return super(DQN, self).learn(
            total_timesteps=total_timesteps,
            callback=callback,
            log_interval=log_interval,
            eval_env=eval_env,
            eval_freq=eval_freq,
            n_eval_episodes=n_eval_episodes,
            tb_log_name=tb_log_name,
            eval_log_path=eval_log_path,
            reset_num_timesteps=reset_num_timesteps,
        )

    def _excluded_save_params(self) -> List[str]:
        return super(DQN, self)._excluded_save_params() + ["q_net", "q_net_target"]

    def _get_torch_save_params(self) -> Tuple[List[str], List[str]]:
        state_dicts = ["policy", "policy.optimizer"]

        return state_dicts, []