File size: 9,375 Bytes
8a5e8bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a088
 
 
8a5e8bc
 
 
 
 
 
 
 
 
 
 
 
5c0a088
8a5e8bc
5c0a088
8a5e8bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

from transformers import AutoModel, AutoTokenizer
import time
import os
import json
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe

load_message = "ChatGLMFT尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLMFT消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"

def string_to_options(arguments):
    import argparse
    import shlex
    # Create an argparse.ArgumentParser instance
    parser = argparse.ArgumentParser()
    # Add command-line arguments
    parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
    parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
    parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
    parser.add_argument("--batch", type=int, help="System prompt", default=50)
    # Parse the arguments
    args = parser.parse_args(shlex.split(arguments))
    return args


#################################################################################
class GetGLMFTHandle(Process):
    def __init__(self):
        super().__init__(daemon=True)
        self.parent, self.child = Pipe()
        self.chatglmft_model = None
        self.chatglmft_tokenizer = None
        self.info = ""
        self.success = True
        self.check_dependency()
        self.start()
        self.threadLock = threading.Lock()
        
    def check_dependency(self):
        try:
            import sentencepiece
            self.info = "依赖检测通过"
            self.success = True
        except:
            self.info = "缺少ChatGLMFT的依赖,如果要使用ChatGLMFT,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。"
            self.success = False

    def ready(self):
        return self.chatglmft_model is not None

    def run(self):
        # 子进程执行
        # 第一次运行,加载参数
        retry = 0
        while True:
            try:
                if self.chatglmft_model is None:
                    from transformers import AutoConfig
                    import torch
                    # conf = 'request_llm/current_ptune_model.json'
                    # if not os.path.exists(conf): raise RuntimeError('找不到微调模型信息')
                    # with open(conf, 'r', encoding='utf8') as f:
                    #     model_args = json.loads(f.read())
                    CHATGLM_PTUNING_CHECKPOINT, = get_conf('CHATGLM_PTUNING_CHECKPOINT')
                    assert os.path.exists(CHATGLM_PTUNING_CHECKPOINT), "找不到微调模型检查点"
                    conf = os.path.join(CHATGLM_PTUNING_CHECKPOINT, "config.json")
                    with open(conf, 'r', encoding='utf8') as f:
                        model_args = json.loads(f.read())
                    if 'model_name_or_path' not in model_args:
                        model_args['model_name_or_path'] = model_args['_name_or_path']
                    self.chatglmft_tokenizer = AutoTokenizer.from_pretrained(
                        model_args['model_name_or_path'], trust_remote_code=True)
                    config = AutoConfig.from_pretrained(
                        model_args['model_name_or_path'], trust_remote_code=True)

                    config.pre_seq_len = model_args['pre_seq_len']
                    config.prefix_projection = model_args['prefix_projection']

                    print(f"Loading prefix_encoder weight from {CHATGLM_PTUNING_CHECKPOINT}")
                    model = AutoModel.from_pretrained(model_args['model_name_or_path'], config=config, trust_remote_code=True)
                    prefix_state_dict = torch.load(os.path.join(CHATGLM_PTUNING_CHECKPOINT, "pytorch_model.bin"))
                    new_prefix_state_dict = {}
                    for k, v in prefix_state_dict.items():
                        if k.startswith("transformer.prefix_encoder."):
                            new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
                    model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)

                    if model_args['quantization_bit'] is not None:
                        print(f"Quantized to {model_args['quantization_bit']} bit")
                        model = model.quantize(model_args['quantization_bit'])
                    model = model.cuda()
                    if model_args['pre_seq_len'] is not None:
                        # P-tuning v2
                        model.transformer.prefix_encoder.float()
                    self.chatglmft_model = model.eval()

                    break
                else:
                    break
            except Exception as e:
                retry += 1
                if retry > 3: 
                    self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。')
                    raise RuntimeError("不能正常加载ChatGLMFT的参数!")

        while True:
            # 进入任务等待状态
            kwargs = self.child.recv()
            # 收到消息,开始请求
            try:
                for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs):
                    self.child.send(response)
                    # # 中途接收可能的终止指令(如果有的话)
                    # if self.child.poll(): 
                    #     command = self.child.recv()
                    #     if command == '[Terminate]': break
            except:
                from toolbox import trimmed_format_exc
                self.child.send('[Local Message] Call ChatGLMFT fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
            # 请求处理结束,开始下一个循环
            self.child.send('[Finish]')

    def stream_chat(self, **kwargs):
        # 主进程执行
        self.threadLock.acquire()
        self.parent.send(kwargs)
        while True:
            res = self.parent.recv()
            if res != '[Finish]':
                yield res
            else:
                break
        self.threadLock.release()
    
global glmft_handle
glmft_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
    """
        多线程方法
        函数的说明请见 request_llm/bridge_all.py
    """
    global glmft_handle
    if glmft_handle is None:
        glmft_handle = GetGLMFTHandle()
        if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info
        if not glmft_handle.success: 
            error = glmft_handle.info
            glmft_handle = None
            raise RuntimeError(error)

    # chatglmft 没有 sys_prompt 接口,因此把prompt加入 history
    history_feedin = []
    history_feedin.append(["What can I do?", sys_prompt])
    for i in range(len(history)//2):
        history_feedin.append([history[2*i], history[2*i+1]] )

    watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
    response = ""
    for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
        if len(observe_window) >= 1:  observe_window[0] = response
        if len(observe_window) >= 2:  
            if (time.time()-observe_window[1]) > watch_dog_patience:
                raise RuntimeError("程序终止。")
    return response



def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
    """
        单线程方法
        函数的说明请见 request_llm/bridge_all.py
    """
    chatbot.append((inputs, ""))

    global glmft_handle
    if glmft_handle is None:
        glmft_handle = GetGLMFTHandle()
        chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info)
        yield from update_ui(chatbot=chatbot, history=[])
        if not glmft_handle.success: 
            glmft_handle = None
            return

    if additional_fn is not None:
        from core_functional import handle_core_functionality
        inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)

    # 处理历史信息
    history_feedin = []
    history_feedin.append(["What can I do?", system_prompt] )
    for i in range(len(history)//2):
        history_feedin.append([history[2*i], history[2*i+1]] )

    # 开始接收chatglmft的回复
    response = "[Local Message]: 等待ChatGLMFT响应中 ..."
    for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
        chatbot[-1] = (inputs, response)
        yield from update_ui(chatbot=chatbot, history=history)

    # 总结输出
    if response == "[Local Message]: 等待ChatGLMFT响应中 ...":
        response = "[Local Message]: ChatGLMFT响应异常 ..."
    history.extend([inputs, response])
    yield from update_ui(chatbot=chatbot, history=history)