File size: 20,448 Bytes
91609d6
 
a9a4892
91609d6
a9a4892
 
91609d6
a9a4892
 
91609d6
03ba072
01a377d
91609d6
ab61418
91609d6
 
 
 
 
 
 
a1fe67d
 
 
 
 
 
9bd8511
91609d6
b0409b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c37c49d
 
 
 
01a377d
 
8a5e8bc
01a377d
 
518385d
971ac20
8a5e8bc
01a377d
 
 
 
 
 
 
 
 
 
 
518385d
01a377d
 
 
b0409b9
 
 
 
40d91e9
01a377d
8a5e8bc
 
 
 
03ba072
 
 
9bd8511
 
01a377d
03ba072
b0409b9
40d91e9
03ba072
9f9848c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03ba072
 
9bd8511
 
01a377d
45c81cd
b0409b9
40d91e9
03ba072
9bd8511
971ac20
 
 
 
 
 
 
 
 
9f9848c
8a5e8bc
 
 
 
9f9848c
 
 
 
 
971ac20
 
 
 
 
 
 
 
 
03ba072
9bd8511
 
 
01a377d
03ba072
b0409b9
40d91e9
03ba072
 
9bd8511
 
 
01a377d
45c81cd
b0409b9
40d91e9
03ba072
 
96c1852
03ba072
9bd8511
 
 
03ba072
b0409b9
40d91e9
03ba072
96c1852
 
 
 
 
 
 
 
a1fe67d
 
 
 
 
 
 
 
03ba072
 
8a5e8bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b9078a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5102ec8
 
 
 
 
 
 
 
 
 
 
 
 
c43e22b
 
 
 
 
 
 
 
 
 
 
 
 
42eef1b
7842cf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a5e8bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1fe67d
8a5e8bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0a088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a5e8bc
 
a1fe67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a5e8bc
 
4b9078a
6aba339
 
9bd8511
6aba339
 
 
 
 
ab61418
6aba339
 
 
 
 
91609d6
 
9bd8511
 
 
 
 
 
 
 
 
 
 
91609d6
 
 
 
 
 
 
 
 
9bd8511
91609d6
 
8a5e8bc
 
6aba339
91609d6
 
 
 
6aba339
 
91609d6
 
 
 
9bd8511
91609d6
 
6aba339
91609d6
 
 
 
781ef44
91609d6
 
 
 
 
 
 
6aba339
 
91609d6
 
 
 
 
 
 
6aba339
 
 
 
 
 
 
91609d6
6aba339
 
91609d6
5353eba
91609d6
 
 
 
 
9bd8511
 
 
 
 
 
 
91609d6
 
8a5e8bc
91609d6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

"""
    该文件中主要包含2个函数,是所有LLM的通用接口,它们会继续向下调用更底层的LLM模型,处理多模型并行等细节

    不具备多线程能力的函数:正常对话时使用,具备完备的交互功能,不可多线程
    1. predict(...)

    具备多线程调用能力的函数:在函数插件中被调用,灵活而简洁
    2. predict_no_ui_long_connection(...)
"""
import tiktoken
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor
from toolbox import get_conf, trimmed_format_exc

from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui
from .bridge_chatgpt import predict as chatgpt_ui

from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
from .bridge_chatglm import predict as chatglm_ui

from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
from .bridge_chatglm import predict as chatglm_ui

from .bridge_qianfan import predict_no_ui_long_connection as qianfan_noui
from .bridge_qianfan import predict as qianfan_ui

colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']

class LazyloadTiktoken(object):
    def __init__(self, model):
        self.model = model

    @staticmethod
    @lru_cache(maxsize=128)
    def get_encoder(model):
        print('正在加载tokenizer,如果是第一次运行,可能需要一点时间下载参数')
        tmp = tiktoken.encoding_for_model(model)
        print('加载tokenizer完毕')
        return tmp
    
    def encode(self, *args, **kwargs):
        encoder = self.get_encoder(self.model) 
        return encoder.encode(*args, **kwargs)
    
    def decode(self, *args, **kwargs):
        encoder = self.get_encoder(self.model) 
        return encoder.decode(*args, **kwargs)

# Endpoint 重定向
API_URL_REDIRECT, AZURE_ENDPOINT, AZURE_ENGINE = get_conf("API_URL_REDIRECT", "AZURE_ENDPOINT", "AZURE_ENGINE")
openai_endpoint = "https://api.openai.com/v1/chat/completions"
api2d_endpoint = "https://openai.api2d.net/v1/chat/completions"
newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
# 兼容旧版的配置
try:
    API_URL, = get_conf("API_URL")
    if API_URL != "https://api.openai.com/v1/chat/completions": 
        openai_endpoint = API_URL
        print("警告!API_URL配置选项将被弃用,请更换为API_URL_REDIRECT配置")
except:
    pass
# 新版配置
if openai_endpoint in API_URL_REDIRECT: openai_endpoint = API_URL_REDIRECT[openai_endpoint]
if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_endpoint]
if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint]


# 获取tokenizer
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
tokenizer_gpt4 = LazyloadTiktoken("gpt-4")
get_token_num_gpt35 = lambda txt: len(tokenizer_gpt35.encode(txt, disallowed_special=()))
get_token_num_gpt4 = lambda txt: len(tokenizer_gpt4.encode(txt, disallowed_special=()))


# 开始初始化模型
AVAIL_LLM_MODELS, LLM_MODEL = get_conf("AVAIL_LLM_MODELS", "LLM_MODEL")
AVAIL_LLM_MODELS = AVAIL_LLM_MODELS + [LLM_MODEL]
# -=-=-=-=-=-=- 以下这部分是最早加入的最稳定的模型 -=-=-=-=-=-=-
model_info = {
    # openai
    "gpt-3.5-turbo": {
        "fn_with_ui": chatgpt_ui,
        "fn_without_ui": chatgpt_noui,
        "endpoint": openai_endpoint,
        "max_token": 4096,
        "tokenizer": tokenizer_gpt35,
        "token_cnt": get_token_num_gpt35,
    },
    
    "gpt-3.5-turbo-16k": {
        "fn_with_ui": chatgpt_ui,
        "fn_without_ui": chatgpt_noui,
        "endpoint": openai_endpoint,
        "max_token": 1024*16,
        "tokenizer": tokenizer_gpt35,
        "token_cnt": get_token_num_gpt35,
    },

    "gpt-3.5-turbo-0613": {
        "fn_with_ui": chatgpt_ui,
        "fn_without_ui": chatgpt_noui,
        "endpoint": openai_endpoint,
        "max_token": 4096,
        "tokenizer": tokenizer_gpt35,
        "token_cnt": get_token_num_gpt35,
    },

    "gpt-3.5-turbo-16k-0613": {
        "fn_with_ui": chatgpt_ui,
        "fn_without_ui": chatgpt_noui,
        "endpoint": openai_endpoint,
        "max_token": 1024 * 16,
        "tokenizer": tokenizer_gpt35,
        "token_cnt": get_token_num_gpt35,
    },

    "gpt-4": {
        "fn_with_ui": chatgpt_ui,
        "fn_without_ui": chatgpt_noui,
        "endpoint": openai_endpoint,
        "max_token": 8192,
        "tokenizer": tokenizer_gpt4,
        "token_cnt": get_token_num_gpt4,
    },

    "gpt-4-32k": {
        "fn_with_ui": chatgpt_ui,
        "fn_without_ui": chatgpt_noui,
        "endpoint": openai_endpoint,
        "max_token": 32768,
        "tokenizer": tokenizer_gpt4,
        "token_cnt": get_token_num_gpt4,
    },
    
    # azure openai
    "azure-gpt-3.5":{
        "fn_with_ui": chatgpt_ui,
        "fn_without_ui": chatgpt_noui,
        "endpoint": azure_endpoint,
        "max_token": 4096,
        "tokenizer": tokenizer_gpt35,
        "token_cnt": get_token_num_gpt35,
    },

    "azure-gpt-4":{
        "fn_with_ui": chatgpt_ui,
        "fn_without_ui": chatgpt_noui,
        "endpoint": azure_endpoint,
        "max_token": 8192,
        "tokenizer": tokenizer_gpt35,
        "token_cnt": get_token_num_gpt35,
    },

    # api_2d
    "api2d-gpt-3.5-turbo": {
        "fn_with_ui": chatgpt_ui,
        "fn_without_ui": chatgpt_noui,
        "endpoint": api2d_endpoint,
        "max_token": 4096,
        "tokenizer": tokenizer_gpt35,
        "token_cnt": get_token_num_gpt35,
    },

    "api2d-gpt-4": {
        "fn_with_ui": chatgpt_ui,
        "fn_without_ui": chatgpt_noui,
        "endpoint": api2d_endpoint,
        "max_token": 8192,
        "tokenizer": tokenizer_gpt4,
        "token_cnt": get_token_num_gpt4,
    },

    # 将 chatglm 直接对齐到 chatglm2
    "chatglm": {
        "fn_with_ui": chatglm_ui,
        "fn_without_ui": chatglm_noui,
        "endpoint": None,
        "max_token": 1024,
        "tokenizer": tokenizer_gpt35,
        "token_cnt": get_token_num_gpt35,
    },
    "chatglm2": {
        "fn_with_ui": chatglm_ui,
        "fn_without_ui": chatglm_noui,
        "endpoint": None,
        "max_token": 1024,
        "tokenizer": tokenizer_gpt35,
        "token_cnt": get_token_num_gpt35,
    },
    "qianfan": {
        "fn_with_ui": qianfan_ui,
        "fn_without_ui": qianfan_noui,
        "endpoint": None,
        "max_token": 2000,
        "tokenizer": tokenizer_gpt35,
        "token_cnt": get_token_num_gpt35,
    },
}

# -=-=-=-=-=-=- 以下部分是新加入的模型,可能附带额外依赖 -=-=-=-=-=-=-
if "claude-1-100k" in AVAIL_LLM_MODELS or "claude-2" in AVAIL_LLM_MODELS:
    from .bridge_claude import predict_no_ui_long_connection as claude_noui
    from .bridge_claude import predict as claude_ui
    model_info.update({
        "claude-1-100k": {
            "fn_with_ui": claude_ui,
            "fn_without_ui": claude_noui,
            "endpoint": None,
            "max_token": 8196,
            "tokenizer": tokenizer_gpt35,
            "token_cnt": get_token_num_gpt35,
        },
    })
    model_info.update({
        "claude-2": {
            "fn_with_ui": claude_ui,
            "fn_without_ui": claude_noui,
            "endpoint": None,
            "max_token": 8196,
            "tokenizer": tokenizer_gpt35,
            "token_cnt": get_token_num_gpt35,
        },
    })
if "jittorllms_rwkv" in AVAIL_LLM_MODELS:
    from .bridge_jittorllms_rwkv import predict_no_ui_long_connection as rwkv_noui
    from .bridge_jittorllms_rwkv import predict as rwkv_ui
    model_info.update({
        "jittorllms_rwkv": {
            "fn_with_ui": rwkv_ui,
            "fn_without_ui": rwkv_noui,
            "endpoint": None,
            "max_token": 1024,
            "tokenizer": tokenizer_gpt35,
            "token_cnt": get_token_num_gpt35,
        },
    })
if "jittorllms_llama" in AVAIL_LLM_MODELS:
    from .bridge_jittorllms_llama import predict_no_ui_long_connection as llama_noui
    from .bridge_jittorllms_llama import predict as llama_ui
    model_info.update({
        "jittorllms_llama": {
            "fn_with_ui": llama_ui,
            "fn_without_ui": llama_noui,
            "endpoint": None,
            "max_token": 1024,
            "tokenizer": tokenizer_gpt35,
            "token_cnt": get_token_num_gpt35,
        },
    })
if "jittorllms_pangualpha" in AVAIL_LLM_MODELS:
    from .bridge_jittorllms_pangualpha import predict_no_ui_long_connection as pangualpha_noui
    from .bridge_jittorllms_pangualpha import predict as pangualpha_ui
    model_info.update({
        "jittorllms_pangualpha": {
            "fn_with_ui": pangualpha_ui,
            "fn_without_ui": pangualpha_noui,
            "endpoint": None,
            "max_token": 1024,
            "tokenizer": tokenizer_gpt35,
            "token_cnt": get_token_num_gpt35,
        },
    })
if "moss" in AVAIL_LLM_MODELS:
    from .bridge_moss import predict_no_ui_long_connection as moss_noui
    from .bridge_moss import predict as moss_ui
    model_info.update({
        "moss": {
            "fn_with_ui": moss_ui,
            "fn_without_ui": moss_noui,
            "endpoint": None,
            "max_token": 1024,
            "tokenizer": tokenizer_gpt35,
            "token_cnt": get_token_num_gpt35,
        },
    })
if "stack-claude" in AVAIL_LLM_MODELS:
    from .bridge_stackclaude import predict_no_ui_long_connection as claude_noui
    from .bridge_stackclaude import predict as claude_ui
    model_info.update({
        "stack-claude": {
            "fn_with_ui": claude_ui,
            "fn_without_ui": claude_noui,
            "endpoint": None,
            "max_token": 8192,
            "tokenizer": tokenizer_gpt35,
            "token_cnt": get_token_num_gpt35,
        }
    })
if "newbing-free" in AVAIL_LLM_MODELS:
    try:
        from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
        from .bridge_newbingfree import predict as newbingfree_ui
        model_info.update({
            "newbing-free": {
                "fn_with_ui": newbingfree_ui,
                "fn_without_ui": newbingfree_noui,
                "endpoint": newbing_endpoint,
                "max_token": 4096,
                "tokenizer": tokenizer_gpt35,
                "token_cnt": get_token_num_gpt35,
            }
        })
    except:
        print(trimmed_format_exc())
if "newbing" in AVAIL_LLM_MODELS:   # same with newbing-free
    try:
        from .bridge_newbingfree import predict_no_ui_long_connection as newbingfree_noui
        from .bridge_newbingfree import predict as newbingfree_ui
        model_info.update({
            "newbing": {
                "fn_with_ui": newbingfree_ui,
                "fn_without_ui": newbingfree_noui,
                "endpoint": newbing_endpoint,
                "max_token": 4096,
                "tokenizer": tokenizer_gpt35,
                "token_cnt": get_token_num_gpt35,
            }
        })
    except:
        print(trimmed_format_exc())
if "chatglmft" in AVAIL_LLM_MODELS:   # same with newbing-free
    try:
        from .bridge_chatglmft import predict_no_ui_long_connection as chatglmft_noui
        from .bridge_chatglmft import predict as chatglmft_ui
        model_info.update({
            "chatglmft": {
                "fn_with_ui": chatglmft_ui,
                "fn_without_ui": chatglmft_noui,
                "endpoint": None,
                "max_token": 4096,
                "tokenizer": tokenizer_gpt35,
                "token_cnt": get_token_num_gpt35,
            }
        })
    except:
        print(trimmed_format_exc())
if "internlm" in AVAIL_LLM_MODELS:
    try:
        from .bridge_internlm import predict_no_ui_long_connection as internlm_noui
        from .bridge_internlm import predict as internlm_ui
        model_info.update({
            "internlm": {
                "fn_with_ui": internlm_ui,
                "fn_without_ui": internlm_noui,
                "endpoint": None,
                "max_token": 4096,
                "tokenizer": tokenizer_gpt35,
                "token_cnt": get_token_num_gpt35,
            }
        })
    except:
        print(trimmed_format_exc())
if "chatglm_onnx" in AVAIL_LLM_MODELS:
    try:
        from .bridge_chatglmonnx import predict_no_ui_long_connection as chatglm_onnx_noui
        from .bridge_chatglmonnx import predict as chatglm_onnx_ui
        model_info.update({
            "chatglm_onnx": {
                "fn_with_ui": chatglm_onnx_ui,
                "fn_without_ui": chatglm_onnx_noui,
                "endpoint": None,
                "max_token": 4096,
                "tokenizer": tokenizer_gpt35,
                "token_cnt": get_token_num_gpt35,
            }
        })
    except:
        print(trimmed_format_exc())
if "qwen" in AVAIL_LLM_MODELS:
    try:
        from .bridge_qwen import predict_no_ui_long_connection as qwen_noui
        from .bridge_qwen import predict as qwen_ui
        model_info.update({
            "qwen": {
                "fn_with_ui": qwen_ui,
                "fn_without_ui": qwen_noui,
                "endpoint": None,
                "max_token": 4096,
                "tokenizer": tokenizer_gpt35,
                "token_cnt": get_token_num_gpt35,
            }
        })
    except:
        print(trimmed_format_exc())
if "chatgpt_website" in AVAIL_LLM_MODELS:   # 接入一些逆向工程https://github.com/acheong08/ChatGPT-to-API/
    try:
        from .bridge_chatgpt_website import predict_no_ui_long_connection as chatgpt_website_noui
        from .bridge_chatgpt_website import predict as chatgpt_website_ui
        model_info.update({
            "chatgpt_website": {
                "fn_with_ui": chatgpt_website_ui,
                "fn_without_ui": chatgpt_website_noui,
                "endpoint": openai_endpoint,
                "max_token": 4096,
                "tokenizer": tokenizer_gpt35,
                "token_cnt": get_token_num_gpt35,
            }
        })
    except:
        print(trimmed_format_exc())
if "spark" in AVAIL_LLM_MODELS:   # 讯飞星火认知大模型
    try:
        from .bridge_spark import predict_no_ui_long_connection as spark_noui
        from .bridge_spark import predict as spark_ui
        model_info.update({
            "spark": {
                "fn_with_ui": spark_ui,
                "fn_without_ui": spark_noui,
                "endpoint": None,
                "max_token": 4096,
                "tokenizer": tokenizer_gpt35,
                "token_cnt": get_token_num_gpt35,
            }
        })
    except:
        print(trimmed_format_exc())
if "sparkv2" in AVAIL_LLM_MODELS:   # 讯飞星火认知大模型
    try:
        from .bridge_spark import predict_no_ui_long_connection as spark_noui
        from .bridge_spark import predict as spark_ui
        model_info.update({
            "sparkv2": {
                "fn_with_ui": spark_ui,
                "fn_without_ui": spark_noui,
                "endpoint": None,
                "max_token": 4096,
                "tokenizer": tokenizer_gpt35,
                "token_cnt": get_token_num_gpt35,
            }
        })
    except:
        print(trimmed_format_exc())
if "llama2" in AVAIL_LLM_MODELS:   # llama2
    try:
        from .bridge_llama2 import predict_no_ui_long_connection as llama2_noui
        from .bridge_llama2 import predict as llama2_ui
        model_info.update({
            "llama2": {
                "fn_with_ui": llama2_ui,
                "fn_without_ui": llama2_noui,
                "endpoint": None,
                "max_token": 4096,
                "tokenizer": tokenizer_gpt35,
                "token_cnt": get_token_num_gpt35,
            }
        })
    except:
        print(trimmed_format_exc())



def LLM_CATCH_EXCEPTION(f):
    """
    装饰器函数,将错误显示出来
    """
    def decorated(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience):
        try:
            return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
        except Exception as e:
            tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n'
            observe_window[0] = tb_str
            return tb_str
    return decorated


def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False):
    """
    发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
    inputs:
        是本次问询的输入
    sys_prompt:
        系统静默prompt
    llm_kwargs:
        LLM的内部调优参数
    history:
        是之前的对话列表
    observe_window = None:
        用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
    """
    import threading, time, copy

    model = llm_kwargs['llm_model']
    n_model = 1
    if '&' not in model:
        assert not model.startswith("tgui"), "TGUI不支持函数插件的实现"

        # 如果只询问1个大语言模型:
        method = model_info[model]["fn_without_ui"]
        return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
    else:

        # 如果同时询问多个大语言模型,这个稍微啰嗦一点,但思路相同,您不必读这个else分支
        executor = ThreadPoolExecutor(max_workers=4)
        models = model.split('&')
        n_model = len(models)
        
        window_len = len(observe_window)
        assert window_len==3
        window_mutex = [["", time.time(), ""] for _ in range(n_model)] + [True]

        futures = []
        for i in range(n_model):
            model = models[i]
            method = model_info[model]["fn_without_ui"]
            llm_kwargs_feedin = copy.deepcopy(llm_kwargs)
            llm_kwargs_feedin['llm_model'] = model
            future = executor.submit(LLM_CATCH_EXCEPTION(method), inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_slience)
            futures.append(future)

        def mutex_manager(window_mutex, observe_window):
            while True:
                time.sleep(0.25)
                if not window_mutex[-1]: break
                # 看门狗(watchdog)
                for i in range(n_model): 
                    window_mutex[i][1] = observe_window[1]
                # 观察窗(window)
                chat_string = []
                for i in range(n_model):
                    chat_string.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {window_mutex[i][0]} </font>" )
                res = '<br/><br/>\n\n---\n\n'.join(chat_string)
                # # # # # # # # # # #
                observe_window[0] = res

        t_model = threading.Thread(target=mutex_manager, args=(window_mutex, observe_window), daemon=True)
        t_model.start()

        return_string_collect = []
        while True:
            worker_done = [h.done() for h in futures]
            if all(worker_done):
                executor.shutdown()
                break
            time.sleep(1)

        for i, future in enumerate(futures):  # wait and get
            return_string_collect.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {future.result()} </font>" )

        window_mutex[-1] = False # stop mutex thread
        res = '<br/><br/>\n\n---\n\n'.join(return_string_collect)
        return res


def predict(inputs, llm_kwargs, *args, **kwargs):
    """
    发送至LLM,流式获取输出。
    用于基础的对话功能。
    inputs 是本次问询的输入
    top_p, temperature是LLM的内部调优参数
    history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
    chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
    additional_fn代表点击的哪个按钮,按钮见functional.py
    """

    method = model_info[llm_kwargs['llm_model']]["fn_with_ui"]  # 如果这里报错,检查config中的AVAIL_LLM_MODELS选项
    yield from method(inputs, llm_kwargs, *args, **kwargs)