Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	File size: 2,983 Bytes
			
			| 8a5e8bc | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | model_name = "Qwen"
cmd_to_install = "`pip install -r request_llm/requirements_qwen.txt`"
from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM
# ------------------------------------------------------------------------------------------------------------------------
# ๐๐ป Local Model
# ------------------------------------------------------------------------------------------------------------------------
@SingletonLocalLLM
class GetONNXGLMHandle(LocalLLMHandle):
    def load_model_info(self):
        # ๐โโ๏ธ๐โโ๏ธ๐โโ๏ธ ๅญ่ฟ็จๆง่ก
        self.model_name = model_name
        self.cmd_to_install = cmd_to_install
    def load_model_and_tokenizer(self):
        # ๐โโ๏ธ๐โโ๏ธ๐โโ๏ธ ๅญ่ฟ็จๆง่ก
        import os, glob
        import os
        import platform
        from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
        model_id = 'qwen/Qwen-7B-Chat'
        revision = 'v1.0.1'
        self._tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, trust_remote_code=True)
        # use fp16
        model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", revision=revision, trust_remote_code=True, fp16=True).eval()
        model.generation_config = GenerationConfig.from_pretrained(model_id, trust_remote_code=True)  # ๅฏๆๅฎไธๅ็็ๆ้ฟๅบฆใtop_p็ญ็ธๅ
ณ่ถ
ๅ
        self._model = model
        return self._model, self._tokenizer
    def llm_stream_generator(self, **kwargs):
        # ๐โโ๏ธ๐โโ๏ธ๐โโ๏ธ ๅญ่ฟ็จๆง่ก
        def adaptor(kwargs):
            query = kwargs['query']
            max_length = kwargs['max_length']
            top_p = kwargs['top_p']
            temperature = kwargs['temperature']
            history = kwargs['history']
            return query, max_length, top_p, temperature, history
        query, max_length, top_p, temperature, history = adaptor(kwargs)
        for response in self._model.chat(self._tokenizer, query, history=history, stream=True):
            yield response
        
    def try_to_import_special_deps(self, **kwargs):
        # import something that will raise error if the user does not install requirement_*.txt
        # ๐โโ๏ธ๐โโ๏ธ๐โโ๏ธ ไธป่ฟ็จๆง่ก
        import importlib
        importlib.import_module('modelscope')
# ------------------------------------------------------------------------------------------------------------------------
# ๐๐ป GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetONNXGLMHandle, model_name) |