Spaces:
Running
Running
File size: 3,587 Bytes
17d0a32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
model_name = "ChatGLM"
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"
from toolbox import get_conf, ProxyNetworkActivate
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
# ------------------------------------------------------------------------------------------------------------------------
# ππ» Local Model
# ------------------------------------------------------------------------------------------------------------------------
class GetGLM2Handle(LocalLLMHandle):
def load_model_info(self):
# πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘
self.model_name = model_name
self.cmd_to_install = cmd_to_install
def load_model_and_tokenizer(self):
# πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘
import os, glob
import os
import platform
from transformers import AutoModel, AutoTokenizer
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
if LOCAL_MODEL_QUANT == "INT4": # INT4
_model_name_ = "THUDM/chatglm2-6b-int4"
elif LOCAL_MODEL_QUANT == "INT8": # INT8
_model_name_ = "THUDM/chatglm2-6b-int8"
else:
_model_name_ = "THUDM/chatglm2-6b" # FP16
with ProxyNetworkActivate('Download_LLM'):
chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
if device=='cpu':
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
else:
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
chatglm_model = chatglm_model.eval()
self._model = chatglm_model
self._tokenizer = chatglm_tokenizer
return self._model, self._tokenizer
def llm_stream_generator(self, **kwargs):
# πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘
def adaptor(kwargs):
query = kwargs['query']
max_length = kwargs['max_length']
top_p = kwargs['top_p']
temperature = kwargs['temperature']
history = kwargs['history']
return query, max_length, top_p, temperature, history
query, max_length, top_p, temperature, history = adaptor(kwargs)
for response, history in self._model.stream_chat(self._tokenizer,
query,
history,
max_length=max_length,
top_p=top_p,
temperature=temperature,
):
yield response
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# πββοΈπββοΈπββοΈ δΈ»θΏη¨ζ§θ‘
import importlib
# importlib.import_module('modelscope')
# ------------------------------------------------------------------------------------------------------------------------
# ππ» GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetGLM2Handle, model_name) |