File size: 9,413 Bytes
5ce1fe8
 
 
7e1376c
168b5c0
 
 
d03c698
168b5c0
bb7ea32
168b5c0
dcf6c65
168b5c0
d03c698
 
 
 
168b5c0
 
 
 
5ce1fe8
 
168b5c0
 
5ce1fe8
168b5c0
3e60665
168b5c0
 
 
5ce1fe8
 
 
 
168b5c0
5ce1fe8
168b5c0
 
5ce1fe8
 
 
 
 
 
 
3e60665
2267fac
 
3e60665
2267fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ce1fe8
2267fac
168b5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcf6c65
 
 
1b1a336
dcf6c65
 
 
 
 
 
3e60665
168b5c0
 
 
 
 
 
 
 
 
 
dcf6c65
168b5c0
085d464
 
 
3e60665
168b5c0
085d464
 
168b5c0
d03c698
 
168b5c0
 
 
 
dcf6c65
168b5c0
 
 
 
 
 
a1e736d
168b5c0
 
 
 
 
dcf6c65
a1e736d
168b5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2267fac
 
 
 
 
 
168b5c0
2267fac
168b5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ce1fe8
 
e7f863b
 
 
 
 
 
 
 
 
 
5ce1fe8
168b5c0
 
 
 
 
 
 
 
 
 
5ce1fe8
 
3e60665
5ce1fe8
7e1376c
3e60665
7e1376c
 
 
5ce1fe8
 
e7f863b
5ce1fe8
 
 
 
e7f863b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ce1fe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168b5c0
5ce1fe8
 
f1ed46a
168b5c0
f1ed46a
 
 
 
 
 
 
 
 
 
 
efb9bdb
 
 
 
 
 
bb7ea32
 
 
 
 
5ce1fe8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import defaultdict
from datetime import datetime
import functools
import logging
import os
from pathlib import Path
import platform
import time
import tempfile

os.system(
    "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/python3.8/site-packages/k2/lib/"
)

from project_settings import project_path, log_directory
import log

log.setup(log_directory=log_directory)

import gradio as gr
import torch
import torchaudio

from toolbox.k2_sherpa.examples import examples
from toolbox.k2_sherpa import decode, nn_models
from toolbox.k2_sherpa.utils import audio_convert

main_logger = logging.getLogger("main")


def get_args():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--pretrained_model_dir",
        default=(project_path / "pretrained_models").as_posix(),
        type=str
    )
    args = parser.parse_args()
    return args


def update_model_dropdown(language: str):
    if language not in nn_models.model_map.keys():
        raise ValueError(f"Unsupported language: {language}")

    choices = nn_models.model_map[language]
    choices = [c["repo_id"] for c in choices]
    return gr.Dropdown(
        choices=choices,
        value=choices[0],
        interactive=True,
    )


def build_html_output(s: str, style: str = "result_item_success"):
    return f"""
    <div class='result'>
        <div class='result_item {style}'>
          {s}
        </div>
    </div>
    """


@torch.no_grad()
def process(
    language: str,
    repo_id: str,
    decoding_method: str,
    num_active_paths: int,
    add_punctuation: str,
    in_filename: str,
    pretrained_model_dir: Path,
):
    main_logger.info("language: {}".format(language))
    main_logger.info("repo_id: {}".format(repo_id))
    main_logger.info("decoding_method: {}".format(decoding_method))
    main_logger.info("num_active_paths: {}".format(num_active_paths))
    main_logger.info("in_filename: {}".format(in_filename))

    # audio convert
    in_filename = Path(in_filename)
    out_filename = Path(tempfile.gettempdir()) / "asr" / in_filename.name
    out_filename.parent.mkdir(parents=True, exist_ok=True)

    audio_convert(in_filename=in_filename.as_posix(),
                  out_filename=out_filename.as_posix(),
                  )

    # model settings
    m_list = nn_models.model_map.get(language)
    if m_list is None:
        raise AssertionError("language invalid: {}".format(language))

    m_dict = None
    for m in m_list:
        if m["repo_id"] == repo_id:
            m_dict = m
    if m_dict is None:
        raise AssertionError("repo_id invalid: {}".format(repo_id))

    # load recognizer
    local_model_dir = pretrained_model_dir / "huggingface" / repo_id
    nn_model_file = local_model_dir / m_dict["nn_model_file"]
    tokens_file = local_model_dir / m_dict["tokens_file"]

    recognizer = nn_models.load_recognizer(
        repo_id=m_dict["repo_id"],
        nn_model_file=nn_model_file.as_posix(),
        tokens_file=tokens_file.as_posix(),
        sub_folder=m_dict["sub_folder"],
        local_model_dir=local_model_dir.as_posix(),
        loader=m_dict["loader"],
        decoding_method=decoding_method,
        num_active_paths=num_active_paths,
    )

    # transcribe
    now = datetime.now()
    date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
    logging.info(f"Started at {date_time}")
    start = time.time()

    text = decode.decode_by_recognizer(recognizer=recognizer,
                                       filename=out_filename.as_posix(),
                                       )

    date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
    end = time.time()

    # statistics
    metadata = torchaudio.info(out_filename.as_posix())
    duration = metadata.num_frames / 16000
    rtf = (end - start) / duration

    main_logger.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")

    info = f"""
    Wave duration  : {duration: .3f} s <br/>
    Processing time: {end - start: .3f} s <br/>
    RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/>
    """

    main_logger.info(info)
    main_logger.info(f"\nrepo_id: {repo_id}\nhyp: {text}")

    return text, build_html_output(info)


def process_uploaded_file(language: str,
                          repo_id: str,
                          decoding_method: str,
                          num_active_paths: int,
                          add_punctuation: str,
                          in_filename: str,
                          pretrained_model_dir: Path,
                          ):
    if in_filename is None or in_filename == "":
        return "", build_html_output(
            "Please first upload a file and then click "
            'the button "submit for recognition"',
            "result_item_error",
        )
    main_logger.info(f"Processing uploaded file: {in_filename}")

    try:
        return process(
            in_filename=in_filename,
            language=language,
            repo_id=repo_id,
            decoding_method=decoding_method,
            num_active_paths=num_active_paths,
            add_punctuation=add_punctuation,
            pretrained_model_dir=pretrained_model_dir,
        )
    except Exception as e:
        msg = "transcribe error: {}".format(str(e))
        main_logger.info(msg)
        return "", build_html_output(msg, "result_item_error")


# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""


def main():
    args = get_args()

    pretrained_model_dir = Path(args.pretrained_model_dir)
    pretrained_model_dir.mkdir(exist_ok=True)

    process_uploaded_file_ = functools.partial(
        process_uploaded_file,
        pretrained_model_dir=pretrained_model_dir,
    )

    title = "# Automatic Speech Recognition with Next-gen Kaldi"

    language_choices = list(nn_models.model_map.keys())

    language_to_models = defaultdict(list)
    for k, v in nn_models.model_map.items():
        for m in v:
            repo_id = m["repo_id"]
            language_to_models[k].append(repo_id)

    # blocks
    with gr.Blocks(css=css) as blocks:
        gr.Markdown(value=title)

        with gr.Tabs():
            with gr.TabItem("Upload from disk"):
                language_radio = gr.Radio(
                    label="Language",
                    choices=language_choices,
                    value=language_choices[0],
                )
                model_dropdown = gr.Dropdown(
                    choices=language_to_models[language_choices[0]],
                    label="Select a model",
                    value=language_to_models[language_choices[0]][0],
                )
                decoding_method_radio = gr.Radio(
                    label="Decoding method",
                    choices=["greedy_search", "modified_beam_search"],
                    value="greedy_search",
                )
                num_active_paths_slider = gr.Slider(
                    minimum=1,
                    value=4,
                    step=1,
                    label="Number of active paths for modified_beam_search",
                )
                punct_radio = gr.Radio(
                    label="Whether to add punctuation (Only for Chinese and English)",
                    choices=["Yes", "No"],
                    value="Yes",
                )

                uploaded_file = gr.Audio(
                    sources=["upload"],
                    type="filepath",
                    label="Upload from disk",
                )
                upload_button = gr.Button("Submit for recognition")
                uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
                uploaded_html_info = gr.HTML(label="Info")

                gr.Examples(
                    examples=examples,
                    inputs=[
                        language_radio,
                        model_dropdown,
                        decoding_method_radio,
                        num_active_paths_slider,
                        punct_radio,
                        uploaded_file,
                    ],
                    outputs=[uploaded_output, uploaded_html_info],
                    fn=process_uploaded_file_,
                )

            upload_button.click(
                process_uploaded_file_,
                inputs=[
                    language_radio,
                    model_dropdown,
                    decoding_method_radio,
                    num_active_paths_slider,
                    punct_radio,
                    uploaded_file,
                ],
                outputs=[uploaded_output, uploaded_html_info],
            )

        language_radio.change(
            update_model_dropdown,
            inputs=language_radio,
            outputs=model_dropdown,
        )

    blocks.queue().launch(
        share=False if platform.system() == "Windows" else False,
        server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
        server_port=7860
    )

    return


if __name__ == "__main__":
    main()