HoneyTian commited on
Commit
3e60665
·
1 Parent(s): 2fb8b3a
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  *.wav filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  *.wav filter=lfs diff=lfs merge=lfs -text
37
+ *.whl filter=lfs diff=lfs merge=lfs -text
examples/wenet/toolbox_infer.py CHANGED
@@ -18,7 +18,7 @@ import torchaudio
18
 
19
  from project_settings import project_path, temp_directory
20
  from toolbox.k2_sherpa.utils import audio_convert
21
- from toolbox.k2_sherpa import decode, models
22
 
23
 
24
  def get_args():
@@ -51,13 +51,13 @@ def main():
51
  )
52
 
53
  # load recognizer
54
- m_dict = models.model_map["Chinese"][0]
55
 
56
  local_model_dir = Path(args.model_dir)
57
  nn_model_file = local_model_dir / m_dict["nn_model_file"]
58
  tokens_file = local_model_dir / m_dict["tokens_file"]
59
 
60
- recognizer = models.load_recognizer(
61
  repo_id=m_dict["repo_id"],
62
  nn_model_file=nn_model_file.as_posix(),
63
  tokens_file=tokens_file.as_posix(),
 
18
 
19
  from project_settings import project_path, temp_directory
20
  from toolbox.k2_sherpa.utils import audio_convert
21
+ from toolbox.k2_sherpa import decode, nn_models
22
 
23
 
24
  def get_args():
 
51
  )
52
 
53
  # load recognizer
54
+ m_dict = nn_models.model_map["Chinese"][0]
55
 
56
  local_model_dir = Path(args.model_dir)
57
  nn_model_file = local_model_dir / m_dict["nn_model_file"]
58
  tokens_file = local_model_dir / m_dict["tokens_file"]
59
 
60
+ recognizer = nn_models.load_recognizer(
61
  repo_id=m_dict["repo_id"],
62
  nn_model_file=nn_model_file.as_posix(),
63
  tokens_file=tokens_file.as_posix(),
main.py CHANGED
@@ -21,7 +21,7 @@ import torch
21
  import torchaudio
22
 
23
  from toolbox.k2_sherpa.examples import examples
24
- from toolbox.k2_sherpa import decode, models
25
  from toolbox.k2_sherpa.utils import audio_convert
26
 
27
  main_logger = logging.getLogger("main")
@@ -40,10 +40,10 @@ def get_args():
40
 
41
 
42
  def update_model_dropdown(language: str):
43
- if language not in models.model_map.keys():
44
  raise ValueError(f"Unsupported language: {language}")
45
 
46
- choices = models.model_map[language]
47
  choices = [c["repo_id"] for c in choices]
48
  return gr.Dropdown(
49
  choices=choices,
@@ -88,7 +88,7 @@ def process(
88
  )
89
 
90
  # model settings
91
- m_list = models.model_map.get(language)
92
  if m_list is None:
93
  raise AssertionError("language invalid: {}".format(language))
94
 
@@ -104,7 +104,7 @@ def process(
104
  nn_model_file = local_model_dir / m_dict["nn_model_file"]
105
  tokens_file = local_model_dir / m_dict["tokens_file"]
106
 
107
- recognizer = models.load_recognizer(
108
  repo_id=m_dict["repo_id"],
109
  nn_model_file=nn_model_file.as_posix(),
110
  tokens_file=tokens_file.as_posix(),
@@ -202,10 +202,10 @@ def main():
202
 
203
  title = "# Automatic Speech Recognition with Next-gen Kaldi"
204
 
205
- language_choices = list(models.model_map.keys())
206
 
207
  language_to_models = defaultdict(list)
208
- for k, v in models.model_map.items():
209
  for m in v:
210
  repo_id = m["repo_id"]
211
  language_to_models[k].append(repo_id)
 
21
  import torchaudio
22
 
23
  from toolbox.k2_sherpa.examples import examples
24
+ from toolbox.k2_sherpa import decode, nn_models
25
  from toolbox.k2_sherpa.utils import audio_convert
26
 
27
  main_logger = logging.getLogger("main")
 
40
 
41
 
42
  def update_model_dropdown(language: str):
43
+ if language not in nn_models.model_map.keys():
44
  raise ValueError(f"Unsupported language: {language}")
45
 
46
+ choices = nn_models.model_map[language]
47
  choices = [c["repo_id"] for c in choices]
48
  return gr.Dropdown(
49
  choices=choices,
 
88
  )
89
 
90
  # model settings
91
+ m_list = nn_models.model_map.get(language)
92
  if m_list is None:
93
  raise AssertionError("language invalid: {}".format(language))
94
 
 
104
  nn_model_file = local_model_dir / m_dict["nn_model_file"]
105
  tokens_file = local_model_dir / m_dict["tokens_file"]
106
 
107
+ recognizer = nn_models.load_recognizer(
108
  repo_id=m_dict["repo_id"],
109
  nn_model_file=nn_model_file.as_posix(),
110
  tokens_file=tokens_file.as_posix(),
 
202
 
203
  title = "# Automatic Speech Recognition with Next-gen Kaldi"
204
 
205
+ language_choices = list(nn_models.model_map.keys())
206
 
207
  language_to_models = defaultdict(list)
208
+ for k, v in nn_models.model_map.items():
209
  for m in v:
210
  repo_id = m["repo_id"]
211
  language_to_models[k].append(repo_id)
toolbox/k2_sherpa/{models.py → nn_models.py} RENAMED
File without changes