File size: 11,759 Bytes
aff1d7c
0c421ed
d482ffb
aff1d7c
 
aaef04d
3a4f72c
bad9b95
6f02348
bad9b95
aff1d7c
 
 
 
 
 
 
 
 
 
 
 
 
29a3409
47e0f32
aff1d7c
 
 
 
3a4f72c
 
 
 
 
 
 
 
 
 
 
 
 
aff1d7c
 
 
 
 
 
 
40b693f
aff1d7c
 
 
 
40b693f
2d940f6
 
aff1d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d482ffb
aff1d7c
 
 
 
 
 
 
 
 
 
3a4f72c
 
 
 
 
 
 
 
 
 
 
 
 
aff1d7c
3a4f72c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d7dadd
 
e52fd17
3a4f72c
 
 
 
 
 
aff1d7c
 
 
 
 
 
 
 
 
 
d482ffb
 
aff1d7c
 
ea7b3db
aff1d7c
ea7b3db
 
 
 
 
aff1d7c
ea7b3db
 
 
aff1d7c
 
 
 
 
a6c8ce4
 
 
 
 
 
 
 
aff1d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7bf78a
acdd046
 
aff1d7c
e7bf78a
 
 
 
 
 
 
aff1d7c
 
a6c8ce4
 
aff1d7c
d482ffb
aff1d7c
 
 
 
 
 
 
 
 
7198c2a
 
aff1d7c
d482ffb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import io
import asyncio
import socket
import requests
import sys
import logging
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import FileResponse, StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from PIL import Image
import torch
from diffusers import (
    DiffusionPipeline,
    AutoencoderKL,
    StableDiffusionControlNetPipeline,
    ControlNetModel,
    StableDiffusionLatentUpscalePipeline,
    StableDiffusionImg2ImgPipeline,
    StableDiffusionControlNetImg2ImgPipeline,
    DPMSolverMultistepScheduler,
    EulerDiscreteScheduler
)
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor
import random
import time
import tempfile

logger = logging.getLogger(__name__)
# Set the logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
logger.setLevel(logging.DEBUG)
file_handler = logging.FileHandler('inference.log')
stream_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# Set the formatter for the stream handler (command line)
stream_handler.setFormatter(formatter)

# Add the file handler and stream handler to the logger
logger.addHandler(file_handler)
logger.addHandler(stream_handler)

app = FastAPI()

BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"

# Initialize both pipelines
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
safety_model_id = "CompVis/stable-diffusion-safety-checker"
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
    BASE_MODEL,
    controlnet=controlnet,
    vae=vae,
    safety_model_id = safety_model_id,
    safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id),
    safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id),
    torch_dtype=torch.float16,
).to("cuda")
image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)

# Sampler map
SAMPLER_MAP = {
    "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
    "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}

def center_crop_resize(img, output_size=(512, 512)):
    width, height = img.size

    # Calculate dimensions to crop to the center
    new_dimension = min(width, height)
    left = (width - new_dimension)/2
    top = (height - new_dimension)/2
    right = (width + new_dimension)/2
    bottom = (height + new_dimension)/2

    # Crop and resize
    img = img.crop((left, top, right, bottom))
    img = img.resize(output_size)

    return img

def common_upscale(samples, width, height, upscale_method, crop=False):
        if crop == "center":
            old_width = samples.shape[3]
            old_height = samples.shape[2]
            old_aspect = old_width / old_height
            new_aspect = width / height
            x = 0
            y = 0
            if old_aspect > new_aspect:
                x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
            elif old_aspect < new_aspect:
                y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
            s = samples[:,:,y:old_height-y,x:old_width-x]
        else:
            s = samples

        return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)

def upscale(samples, upscale_method, scale_by):
        #s = samples.copy()
        width = round(samples["images"].shape[3] * scale_by)
        height = round(samples["images"].shape[2] * scale_by)
        s = common_upscale(samples["images"], width, height, upscale_method, "disabled")
        return (s)

#

def convert_to_pil(base64_image):
    pil_image = processing_utils.decode_base64_to_image(base64_image)
    return pil_image

def convert_to_base64(pil_image):
    base64_image = processing_utils.encode_pil_to_base64(pil_image)
    return base64_image

def inference(
    control_image: Image.Image,
    prompt: str,
    negative_prompt = "sexual content, racism, humans, faces",
    guidance_scale: float = 8.0,
    controlnet_conditioning_scale: float = 1,
    control_guidance_start: float = 1,    
    control_guidance_end: float = 1,
    upscaler_strength: float = 0.5,
    seed: int = -1,
    sampler = "DPM++ Karras SDE",
    #profile: gr.OAuthProfile | None = None,
):

    try:
        # Log input types and values
        logger.debug("Input Types: control_image=%s, prompt=%s, negative_prompt=%s, guidance_scale=%s, controlnet_conditioning_scale=%s, control_guidance_start=%s, control_guidance_end=%s, upscaler_strength=%s, seed=%s, sampler=%s",
                    type(control_image), type(prompt), type(negative_prompt), type(guidance_scale), type(controlnet_conditioning_scale),
                    type(control_guidance_start), type(control_guidance_end), type(upscaler_strength), type(seed), type(sampler))
        logger.debug("Input Values: control_image=%s, prompt=%s, negative_prompt=%s, guidance_scale=%s, controlnet_conditioning_scale=%s, control_guidance_start=%s, control_guidance_end=%s, upscaler_strength=%s, seed=%s, sampler=%s",
                    control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale,
                    control_guidance_start, control_guidance_end, upscaler_strength, seed, sampler)

        start_time = time.time()
        start_time_struct = time.localtime(start_time)
        start_time_formatted = time.strftime("%H:%M:%S", start_time_struct)
        logger.info(f"Inference started at {start_time_formatted}")

        # Rest of your existing code
        control_image_small = center_crop_resize(control_image)
        control_image_large = center_crop_resize(control_image, (1024, 1024))
    
        main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
        my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
        generator = torch.Generator(device="cuda").manual_seed(my_seed)
        
        out = main_pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image=control_image_small,
            guidance_scale=float(guidance_scale),
            controlnet_conditioning_scale=float(controlnet_conditioning_scale),
            generator=generator,
            control_guidance_start=float(control_guidance_start),
            control_guidance_end=float(control_guidance_end),
            num_inference_steps=15,
            output_type="latent"
        )
        upscaled_latents = upscale(out, "nearest-exact", 2)
        out_image = image_pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            control_image=control_image_large,        
            image=upscaled_latents,
            guidance_scale=float(guidance_scale),
            generator=generator,
            num_inference_steps=20,
            strength=upscaler_strength,
            control_guidance_start=float(control_guidance_start),
            control_guidance_end=float(control_guidance_end),
            controlnet_conditioning_scale=float(controlnet_conditioning_scale)
        )
        end_time = time.time()
        end_time_struct = time.localtime(end_time)
        end_time_formatted = time.strftime("%H:%M:%S", end_time_struct)
        print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s")
        logger.debug("Output Types: generated_image=%s", type(None))
        logger.debug("Content of out_image: %s", out_image)
        logger.debug("Structure of out_image: %s", dir(out_image))
        return out_image["images"][0]
        
    
    except Exception as e:
        # Handle exceptions and log error message
        logger.error("Error occurred during inference: %s", str(e))
        return str(e)
        

def generate_image_from_parameters(prompt, guidance_scale, controlnet_scale, controlnet_end, upscaler_strength, seed, sampler_type, image):
    try:
        # Save the uploaded image to a temporary file
        temp_image_path = f"/tmp/{int(time.time())}_{image.filename}"
        with open(temp_image_path, "wb") as temp_image:
            temp_image.write(image.file.read())

        # Open the uploaded image using PIL
        control_image_path = "scrollwhite.png"
        control_image = Image.open(control_image_path)

        # Call existing inference function with the provided parameters
        generated_image, _, _, _ = inference(control_image, prompt, "", guidance_scale, controlnet_scale, 0, controlnet_end, upscaler_strength, seed, sampler_type)

        # Save the generated image as binary data
        output_image_io = io.BytesIO()
        generated_image.save(output_image_io, format="PNG")
        output_image_io.seek(0)
        output_image_binary = output_image_io.read()

        # Return the generated image binary data
        logger.debug("Output Values: generated_image=<binary data>")
        return output_image_binary

    except Exception as e:
        # Handle exceptions and return an error message if something goes wrong
        return str(e)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # You can replace ["*"] with specific origins if needed
    allow_credentials=True,
    allow_methods=["*"],  # Allow all methods
    allow_headers=["*"],  # Allow all headers
)

@app.post("/generate_image")
async def generate_image(
    prompt: str = Form(...),
    guidance_scale: float = Form(...),
    controlnet_scale: float = Form(...),
    controlnet_end: float = Form(...),
    upscaler_strength: float = Form(...),
    seed: int = Form(...),
    sampler_type: str = Form(...),
    image: UploadFile = File(...)
):
    try:
        # Save the uploaded image to a temporary file
        temp_image_path = f"/tmp/{int(time.time())}_{image.filename}"
        with open(temp_image_path, "wb") as temp_image:
            temp_image.write(image.file.read())

        # Open the uploaded image using PIL
        control_image = Image.open(temp_image_path)

        # Call existing inference function with the provided parameters
        generated_image = inference(control_image, prompt, "", guidance_scale, controlnet_scale, 0, controlnet_end, upscaler_strength, seed, sampler_type)
        if generated_image is None:
            return "Failed to generate image"

        # Save the generated image as binary data
        output_image_io = io.BytesIO()
        generated_image.save(output_image_io, format="PNG")
        output_image_io.seek(0)
        
        # Return the image as a streaming response
        return StreamingResponse(content=output_image_io, media_type="image/png")

    except Exception as e:
        logger.error("Error occurred during image generation: %s", str(e))
        return "Failed to generate image"

async def start_fastapi():
    # Get internal IP address
    internal_ip = socket.gethostbyname(socket.gethostname())

    # Get public IP address using a public API (this may not work if you are behind a router/NAT)
    try:
        public_ip = requests.get("http://api.ipify.org").text
    except requests.RequestException:
        public_ip = "Not Available"

    print(f"Internal URL: http://{internal_ip}:7860")
    print(f"Public URL: http://{public_ip}:7860")

    # Run FastAPI using hypercorn
    config = uvicorn.Config(app="app:app", host="0.0.0.0", port=7860, reload=True)
    server = uvicorn.Server(config)
    await server.serve()

# Call the asynchronous function using asyncio.run()
if __name__ == "__main__":
    asyncio.run(start_fastapi())