pseudotheos
commited on
Commit
·
aff1d7c
1
Parent(s):
3f84c0a
add app
Browse files- app.py +274 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import socket
|
3 |
+
import requests
|
4 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
5 |
+
from fastapi.responses import FileResponse
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
from diffusers import (
|
9 |
+
DiffusionPipeline,
|
10 |
+
AutoencoderKL,
|
11 |
+
StableDiffusionControlNetPipeline,
|
12 |
+
ControlNetModel,
|
13 |
+
StableDiffusionLatentUpscalePipeline,
|
14 |
+
StableDiffusionImg2ImgPipeline,
|
15 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
16 |
+
DPMSolverMultistepScheduler,
|
17 |
+
EulerDiscreteScheduler
|
18 |
+
)
|
19 |
+
import random
|
20 |
+
import time
|
21 |
+
import tempfile
|
22 |
+
|
23 |
+
app = FastAPI()
|
24 |
+
|
25 |
+
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
|
26 |
+
|
27 |
+
# Initialize both pipelines
|
28 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
|
29 |
+
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
|
30 |
+
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
31 |
+
BASE_MODEL,
|
32 |
+
controlnet=controlnet,
|
33 |
+
vae=vae,
|
34 |
+
safety_checker=None,
|
35 |
+
torch_dtype=torch.float16,
|
36 |
+
).to("cuda")
|
37 |
+
image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)
|
38 |
+
|
39 |
+
# Sampler map
|
40 |
+
SAMPLER_MAP = {
|
41 |
+
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
42 |
+
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
43 |
+
}
|
44 |
+
|
45 |
+
def center_crop_resize(img, output_size=(512, 512)):
|
46 |
+
width, height = img.size
|
47 |
+
|
48 |
+
# Calculate dimensions to crop to the center
|
49 |
+
new_dimension = min(width, height)
|
50 |
+
left = (width - new_dimension)/2
|
51 |
+
top = (height - new_dimension)/2
|
52 |
+
right = (width + new_dimension)/2
|
53 |
+
bottom = (height + new_dimension)/2
|
54 |
+
|
55 |
+
# Crop and resize
|
56 |
+
img = img.crop((left, top, right, bottom))
|
57 |
+
img = img.resize(output_size)
|
58 |
+
|
59 |
+
return img
|
60 |
+
|
61 |
+
def common_upscale(samples, width, height, upscale_method, crop=False):
|
62 |
+
if crop == "center":
|
63 |
+
old_width = samples.shape[3]
|
64 |
+
old_height = samples.shape[2]
|
65 |
+
old_aspect = old_width / old_height
|
66 |
+
new_aspect = width / height
|
67 |
+
x = 0
|
68 |
+
y = 0
|
69 |
+
if old_aspect > new_aspect:
|
70 |
+
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
|
71 |
+
elif old_aspect < new_aspect:
|
72 |
+
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
|
73 |
+
s = samples[:,:,y:old_height-y,x:old_width-x]
|
74 |
+
else:
|
75 |
+
s = samples
|
76 |
+
|
77 |
+
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
|
78 |
+
|
79 |
+
def upscale(samples, upscale_method, scale_by):
|
80 |
+
#s = samples.copy()
|
81 |
+
width = round(samples["images"].shape[3] * scale_by)
|
82 |
+
height = round(samples["images"].shape[2] * scale_by)
|
83 |
+
s = common_upscale(samples["images"], width, height, upscale_method, "disabled")
|
84 |
+
return (s)
|
85 |
+
|
86 |
+
#
|
87 |
+
|
88 |
+
def convert_to_pil(base64_image):
|
89 |
+
pil_image = processing_utils.decode_base64_to_image(base64_image)
|
90 |
+
return pil_image
|
91 |
+
|
92 |
+
def convert_to_base64(pil_image):
|
93 |
+
base64_image = processing_utils.encode_pil_to_base64(pil_image)
|
94 |
+
return base64_image
|
95 |
+
|
96 |
+
# Inference function
|
97 |
+
def inference(
|
98 |
+
control_image: Image.Image,
|
99 |
+
prompt: str,
|
100 |
+
negative_prompt: str,
|
101 |
+
guidance_scale: float = 8.0,
|
102 |
+
controlnet_conditioning_scale: float = 1,
|
103 |
+
control_guidance_start: float = 1,
|
104 |
+
control_guidance_end: float = 1,
|
105 |
+
upscaler_strength: float = 0.5,
|
106 |
+
seed: int = -1,
|
107 |
+
sampler = "DPM++ Karras SDE",
|
108 |
+
#profile: gr.OAuthProfile | None = None,
|
109 |
+
):
|
110 |
+
start_time = time.time()
|
111 |
+
start_time_struct = time.localtime(start_time)
|
112 |
+
start_time_formatted = time.strftime("%H:%M:%S", start_time_struct)
|
113 |
+
print(f"Inference started at {start_time_formatted}")
|
114 |
+
|
115 |
+
# Generate the initial image
|
116 |
+
#init_image = init_pipe(prompt).images[0]
|
117 |
+
|
118 |
+
# Rest of your existing code
|
119 |
+
control_image_small = center_crop_resize(control_image)
|
120 |
+
control_image_large = center_crop_resize(control_image, (1024, 1024))
|
121 |
+
|
122 |
+
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
123 |
+
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
|
124 |
+
generator = torch.Generator(device="cuda").manual_seed(my_seed)
|
125 |
+
|
126 |
+
out = main_pipe(
|
127 |
+
prompt=prompt,
|
128 |
+
negative_prompt=negative_prompt,
|
129 |
+
image=control_image_small,
|
130 |
+
guidance_scale=float(guidance_scale),
|
131 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
132 |
+
generator=generator,
|
133 |
+
control_guidance_start=float(control_guidance_start),
|
134 |
+
control_guidance_end=float(control_guidance_end),
|
135 |
+
num_inference_steps=15,
|
136 |
+
output_type="latent"
|
137 |
+
)
|
138 |
+
upscaled_latents = upscale(out, "nearest-exact", 2)
|
139 |
+
out_image = image_pipe(
|
140 |
+
prompt=prompt,
|
141 |
+
negative_prompt=negative_prompt,
|
142 |
+
control_image=control_image_large,
|
143 |
+
image=upscaled_latents,
|
144 |
+
guidance_scale=float(guidance_scale),
|
145 |
+
generator=generator,
|
146 |
+
num_inference_steps=20,
|
147 |
+
strength=upscaler_strength,
|
148 |
+
control_guidance_start=float(control_guidance_start),
|
149 |
+
control_guidance_end=float(control_guidance_end),
|
150 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale)
|
151 |
+
)
|
152 |
+
end_time = time.time()
|
153 |
+
end_time_struct = time.localtime(end_time)
|
154 |
+
end_time_formatted = time.strftime("%H:%M:%S", end_time_struct)
|
155 |
+
print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s")
|
156 |
+
|
157 |
+
# Save image + metadata
|
158 |
+
user_history.save_image(
|
159 |
+
label=prompt,
|
160 |
+
image=out_image["images"][0],
|
161 |
+
profile=profile,
|
162 |
+
metadata={
|
163 |
+
"prompt": prompt,
|
164 |
+
"negative_prompt": negative_prompt,
|
165 |
+
"guidance_scale": guidance_scale,
|
166 |
+
"controlnet_conditioning_scale": controlnet_conditioning_scale,
|
167 |
+
"control_guidance_start": control_guidance_start,
|
168 |
+
"control_guidance_end": control_guidance_end,
|
169 |
+
"upscaler_strength": upscaler_strength,
|
170 |
+
"seed": seed,
|
171 |
+
"sampler": sampler,
|
172 |
+
},
|
173 |
+
)
|
174 |
+
|
175 |
+
return out_image["images"][0], my_seed
|
176 |
+
|
177 |
+
import os
|
178 |
+
|
179 |
+
def generate_image_from_parameters(prompt, guidance_scale, controlnet_scale, controlnet_end, upscaler_strength, seed, sampler_type, image):
|
180 |
+
try:
|
181 |
+
# Save the uploaded image to a temporary file
|
182 |
+
temp_image_path = f"/tmp/{int(time.time())}_{image.filename}"
|
183 |
+
with open(temp_image_path, "wb") as temp_image:
|
184 |
+
temp_image.write(image.file.read())
|
185 |
+
|
186 |
+
# Open the uploaded image using PIL
|
187 |
+
control_image = Image.open(temp_image_path)
|
188 |
+
|
189 |
+
# Call existing inference function with the provided parameters
|
190 |
+
generated_image, _, _, _ = inference(control_image, prompt, "", guidance_scale, controlnet_scale, 0, controlnet_end, upscaler_strength, seed, sampler_type)
|
191 |
+
|
192 |
+
# Specify the desired output directory for saving generated images
|
193 |
+
output_directory = "/home/user/app/generated_files"
|
194 |
+
|
195 |
+
# Create the output directory if it doesn't exist
|
196 |
+
os.makedirs(output_directory, exist_ok=True)
|
197 |
+
|
198 |
+
# Generate a unique filename for the saved image
|
199 |
+
filename = f"generated_image_{int(time.time())}.png"
|
200 |
+
|
201 |
+
# Save the generated image to the permanent location
|
202 |
+
output_path = os.path.join(output_directory, filename)
|
203 |
+
generated_image.save(output_path, format="PNG")
|
204 |
+
|
205 |
+
# Return the generated image path
|
206 |
+
return output_path
|
207 |
+
|
208 |
+
except Exception as e:
|
209 |
+
# Handle exceptions and return an error message if something goes wrong
|
210 |
+
return str(e)
|
211 |
+
|
212 |
+
@app.post("/generate_image")
|
213 |
+
async def generate_image(
|
214 |
+
prompt: str = Form(...),
|
215 |
+
guidance_scale: float = Form(...),
|
216 |
+
controlnet_scale: float = Form(...),
|
217 |
+
controlnet_end: float = Form(...),
|
218 |
+
upscaler_strength: float = Form(...),
|
219 |
+
seed: int = Form(...),
|
220 |
+
sampler_type: str = Form(...),
|
221 |
+
image: UploadFile = File(...)
|
222 |
+
):
|
223 |
+
try:
|
224 |
+
# Save the uploaded image to a temporary file
|
225 |
+
temp_image_path = f"/tmp/{int(time.time())}_{image.filename}"
|
226 |
+
with open(temp_image_path, "wb") as temp_image:
|
227 |
+
temp_image.write(image.file.read())
|
228 |
+
|
229 |
+
# Open the uploaded image using PIL
|
230 |
+
control_image = Image.open(temp_image_path)
|
231 |
+
|
232 |
+
# Call existing inference function with the provided parameters
|
233 |
+
generated_image, _, _, _ = inference(control_image, prompt, "", guidance_scale, controlnet_scale, 0, controlnet_end, upscaler_strength, seed, sampler_type)
|
234 |
+
|
235 |
+
# Specify the desired output directory for saving generated images
|
236 |
+
output_directory = "/home/user/app/generated_files"
|
237 |
+
|
238 |
+
# Create the output directory if it doesn't exist
|
239 |
+
os.makedirs(output_directory, exist_ok=True)
|
240 |
+
|
241 |
+
# Generate a unique filename for the saved image
|
242 |
+
filename = f"generated_image_{int(time.time())}.png"
|
243 |
+
|
244 |
+
# Save the generated image to the permanent location
|
245 |
+
output_path = os.path.join(output_directory, filename)
|
246 |
+
generated_image.save(output_path, format="PNG")
|
247 |
+
|
248 |
+
# Return the generated image path
|
249 |
+
return output_path
|
250 |
+
|
251 |
+
except Exception as e:
|
252 |
+
# Handle exceptions and return an error message if something goes wrong
|
253 |
+
return str(e)
|
254 |
+
|
255 |
+
if __name__ == "__main__":
|
256 |
+
import uvicorn
|
257 |
+
|
258 |
+
# Get internal IP address
|
259 |
+
internal_ip = socket.gethostbyname(socket.gethostname())
|
260 |
+
|
261 |
+
# Get public IP address using a public API (this may not work if you are behind a router/NAT)
|
262 |
+
try:
|
263 |
+
public_ip = requests.get("http://api.ipify.org").text
|
264 |
+
except requests.RequestException:
|
265 |
+
public_ip = "Not Available"
|
266 |
+
|
267 |
+
print(f"Internal URL: http://{internal_ip}:8000")
|
268 |
+
print(f"Public URL: http://{public_ip}:8000")
|
269 |
+
|
270 |
+
uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)
|
271 |
+
|
272 |
+
if __name__ == "__main__":
|
273 |
+
import uvicorn
|
274 |
+
uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)
|
requirements.txt
ADDED
File without changes
|