File size: 16,399 Bytes
e93eb3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56980e9
e93eb3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import os

import streamlit as st
import time
try:
    from src.models import get_all_model_names
    from src.open_strawberry import get_defaults, manage_conversation
except (ModuleNotFoundError, ImportError):
    from models import get_all_model_names
    from open_strawberry import get_defaults, manage_conversation

(model, system_prompt, initial_prompt, expected_answer,
 next_prompts, num_turns, show_next, final_prompt,
 temperature, max_tokens,
 num_turns_final_mod,
 show_cot,
 verbose) = get_defaults()

st.title("Open Strawberry Conversation")
st.markdown("[Open Strawberry GitHub Repo](https://github.com/pseudotensor/open-strawberry)")

# Initialize session state
if "messages" not in st.session_state:
    st.session_state.messages = []
if "turn_count" not in st.session_state:
    st.session_state.turn_count = 0
if "input_key" not in st.session_state:
    st.session_state.input_key = 0
if "conversation_started" not in st.session_state:
    st.session_state.conversation_started = False
if "waiting_for_continue" not in st.session_state:
    st.session_state.waiting_for_continue = False
if "generator" not in st.session_state:
    st.session_state.generator = None  # Store the generator in session state
if "prompt" not in st.session_state:
    st.session_state.prompt = None  # Store the prompt in session state
if "answer" not in st.session_state:
    st.session_state.answer = None
if "system_prompt" not in st.session_state:
    st.session_state.system_prompt = None
if "output_tokens" not in st.session_state:
    st.session_state.output_tokens = 0
if "input_tokens" not in st.session_state:
    st.session_state.input_tokens = 0
if "cache_creation_input_tokens" not in st.session_state:
    st.session_state.cache_creation_input_tokens = 0
if "cache_read_input_tokens" not in st.session_state:
    st.session_state.cache_read_input_tokens = 0
if "verbose" not in st.session_state:
    st.session_state.verbose = verbose
if "max_tokens" not in st.session_state:
    st.session_state.max_tokens = max_tokens
if "temperature" not in st.session_state:
    st.session_state.temperature = temperature
if "next_prompts" not in st.session_state:
    st.session_state.next_prompts = next_prompts
if "final_prompt" not in st.session_state:
    st.session_state.final_prompt = final_prompt


# Function to display chat messages
def display_chat():
    display_step = 1
    for message in st.session_state.messages:
        if message["role"] == "assistant":
            if 'final' in message and message['final']:
                display_final(message)
            elif 'turn_title' in message and message['turn_title']:
                display_turn_title(message, display_step=display_step)
                display_step += 1
            else:
                with st.expander("Chain of Thoughts", expanded=st.session_state["show_cot"]):
                    assistant_container1 = st.chat_message("assistant")
                    with assistant_container1.container():
                        st.markdown(message["content"].replace('\n', '  \n'), unsafe_allow_html=True)
        elif message["role"] == "user":
            if not message["initial"] and not st.session_state.show_next:
                continue
            user_container1 = st.chat_message("user")
            with user_container1:
                st.markdown(message["content"].replace('\n', '  \n'), unsafe_allow_html=True)


def display_final(chunk1, can_rerun=False):
    if 'final' in chunk1 and chunk1['final']:
        if st.session_state.answer:
            if st.session_state.answer.strip() in chunk1["content"]:
                st.markdown(f'<h3 class="expander-title">πŸ† Final Answer</h3>', unsafe_allow_html=True)
            else:
                st.markdown(f'Expected: **{st.session_state.answer.strip()}**', unsafe_allow_html=True)
                st.markdown(f'<h3 class="expander-title">πŸ‘Ž Final Answer</h3>', unsafe_allow_html=True)
        else:
            st.markdown(f'<h3 class="expander-title">πŸ‘Œ Final Answer</h3>', unsafe_allow_html=True)
        final = chunk1["content"].strip().replace('\n', '  \n')
        if '\n' in final or '<br>' in final:
            st.markdown(f'{final}', unsafe_allow_html=True)
        else:
            st.markdown(f'**{final}**', unsafe_allow_html=True)
        if can_rerun:
            # rerun to get token stats
            st.rerun()


def display_turn_title(chunk1, display_step=None):
    if display_step is None:
        display_step = st.session_state.turn_count
        name = "Completed Step"
    else:
        name = "Step"
    if 'turn_title' in chunk1 and chunk1['turn_title']:
        turn_title = chunk1["content"].strip().replace('\n', '  \n')
        step_time = f' in time {str(int(chunk1["thinking_time"]))}s'
        acum_time = f' in total {str(int(chunk1["total_thinking_time"]))}s'
        st.markdown(f'**{name} {display_step}: {turn_title}{step_time}{acum_time}**', unsafe_allow_html=True)


if st.button("Start Reasoning Engine", disabled=st.session_state.conversation_started):
    st.session_state.conversation_started = True

# Sidebar
st.sidebar.title("Controls")

on_hf_spaces = os.getenv("HF_SPACES", '0') == '1'


def save_env_vars(env_vars):
    assert not on_hf_spaces, "Cannot save env vars in HF Spaces"
    env_path = os.path.join(os.path.dirname(__file__), "..", ".env")
    from dotenv import set_key
    for key, value in env_vars.items():
        set_key(env_path, key, value)


def get_dotenv_values():
    if on_hf_spaces:
        return st.session_state.secrets
    else:
        from dotenv import dotenv_values
        return dotenv_values(os.path.join(os.path.dirname(__file__), "..", ".env"))


if 'secrets' not in st.session_state:
    if on_hf_spaces:
        # allow user to enter
        st.session_state.secrets = dict(OPENAI_API_KEY='',
                                        OPENAI_BASE_URL='https://api.openai.com/v1',
                                        OPENAI_MODEL_NAME='',
                                        # OLLAMA_OPENAI_API_KEY='',
                                        # OLLAMA_OPENAI_BASE_URL='http://localhost:11434/v1/',
                                        # OLLAMA_OPENAI_MODEL_NAME='',
                                        # AZURE_OPENAI_API_KEY='',
                                        # AZURE_OPENAI_API_VERSION='',
                                        # AZURE_OPENAI_ENDPOINT='',
                                        # AZURE_OPENAI_DEPLOYMENT='',
                                        # AZURE_OPENAI_MODEL_NAME='',
                                        GEMINI_API_KEY='',
                                        # MISTRAL_API_KEY='',
                                        GROQ_API_KEY='',
                                        ANTHROPIC_API_KEY='',
                                        )

    else:
        st.session_state.secrets = {}


def update_model_selection():
    visible_models1 = get_all_model_names(st.session_state.secrets, on_hf_spaces)
    if visible_models1 and "model_name" in st.session_state:
        if st.session_state.model_name not in visible_models1:
            st.session_state.model_name = visible_models1[0]


# Replace the existing model selection code with this
if 'model_name' not in st.session_state or not st.session_state.model_name:
    update_model_selection()

# Model selection
visible_models = get_all_model_names(st.session_state.secrets, on_hf_spaces)
st.sidebar.selectbox("Select Model", visible_models, key="model_name",
                     disabled=st.session_state.conversation_started)
st.sidebar.checkbox("Show Next", value=show_next, key="show_next", disabled=st.session_state.conversation_started)
st.sidebar.number_input("Num Turns to Check if Final Answer", value=num_turns_final_mod, key="num_turns_final_mod",
                        disabled=st.session_state.conversation_started)
st.sidebar.number_input("Num Turns per User Click of Continue", value=num_turns, key="num_turns",
                        disabled=st.session_state.conversation_started)
st.sidebar.checkbox("Show Chain of Thoughts Details", value=show_cot, key="show_cot",
                    disabled=st.session_state.conversation_started)

# Reset conversation button
reset_clicked = st.sidebar.button("Reset Conversation")
with st.sidebar.expander("Edit in-memory session secrets" if on_hf_spaces else "Edit .env", expanded=on_hf_spaces):
    dotenv_dict = get_dotenv_values()
    new_env = {}
    for k, v in dotenv_dict.items():
        new_env[k] = st.text_input(k, value=v, key=k, disabled=st.session_state.conversation_started, type="password")
        st.session_state.secrets[k] = new_env[k]
    save_secrets_clicked = st.button("Save dotenv" if not on_hf_spaces else "Save secrets to memory")

    if save_secrets_clicked:
        if on_hf_spaces:
            st.success("secrets temporarily stored to your session memory only")
        else:
            save_env_vars(st.session_state.user_secrets)
            st.success("dotenv saved to .env file")

if reset_clicked:
    st.session_state.messages = []
    st.session_state.turn_count = 0
    st.sidebar.write(f"Turn count: {st.session_state.turn_count}")
    st.session_state.input_key += 1
    st.session_state.conversation_started = False
    st.session_state.generator = None  # Reset the generator
    reset_clicked = False
    st.session_state.output_tokens = 0
    st.session_state.input_tokens = 0
    st.session_state.cache_creation_input_tokens = 0
    st.session_state.cache_read_input_tokens = 0
    st.rerun()

st.session_state.waiting_for_continue = False

# Display debug information
st.sidebar.write(f"Turn count: {st.session_state.turn_count}")
num_messages = len([x for x in st.session_state.messages if x.get('role', '') == 'assistant'])
st.sidebar.write(f"Number of AI messages: {num_messages}")
st.sidebar.write(f"Conversation started: {st.session_state.conversation_started}")
st.sidebar.write(f"Output tokens: {st.session_state.output_tokens}")
st.sidebar.write(f"Input tokens: {st.session_state.input_tokens}")
st.sidebar.write(f"Cache creation input tokens: {st.session_state.cache_creation_input_tokens}")
st.sidebar.write(f"Cache read input tokens: {st.session_state.cache_read_input_tokens}")

# Handle user input
if not st.session_state.conversation_started:
    prompt = st.text_area("What would you like to ask?", value=initial_prompt,
                          key=f"input_{st.session_state.input_key}", height=500)
    st.session_state.prompt = prompt
    answer = st.text_area("Expected answer (Empty if do not know)", value=expected_answer,
                          key=f"answer_{st.session_state.input_key}", height=100)
    st.session_state.answer = answer
    system_prompt = st.text_area("System Prompt", value=system_prompt,
                                 key=f"system_prompt_{st.session_state.input_key}", height=200)
    st.session_state.system_prompt = system_prompt
else:
    st.session_state.conversation_started = True
    st.session_state.input_key += 1

# Display chat history
chat_container = st.container()
with chat_container:
    display_chat()

# Process conversation
current_assistant_message = ''
assistant_placeholder = None

try:
    while True:
        if st.session_state.waiting_for_continue:
            time.sleep(0.1)  # Short sleep to prevent excessive CPU usage
            continue
        if not st.session_state.conversation_started:
            time.sleep(0.1)
            continue
        elif st.session_state.generator is None:
            st.session_state.generator = manage_conversation(
                model=st.session_state["model_name"],
                system=st.session_state.system_prompt,
                initial_prompt=st.session_state.prompt,
                next_prompts=st.session_state.next_prompts,
                final_prompt=st.session_state.final_prompt,
                num_turns_final_mod=st.session_state.num_turns_final_mod,
                num_turns=st.session_state.num_turns,
                temperature=st.session_state.temperature,
                max_tokens=st.session_state.max_tokens,
                verbose=st.session_state.verbose,
            )
        chunk = next(st.session_state.generator)
        if chunk["role"] == "assistant":
            if not chunk.get('final', False) and not chunk.get('turn_title', False):
                current_assistant_message += chunk["content"]
            if assistant_placeholder is None:
                assistant_placeholder = st.empty()  # Placeholder for assistant's message

            # Update the assistant container with the progressively streaming message
            with assistant_placeholder.container():
                # Update in the same chat message
                with st.expander("Chain of Thoughts", expanded=st.session_state["show_cot"]):
                    st.chat_message("assistant").markdown(current_assistant_message, unsafe_allow_html=True)
                if 'turn_title' in chunk and chunk['turn_title']:
                    st.session_state.messages.append(
                        {"role": "assistant", "content": chunk['content'], 'turn_title': True,
                         'thinking_time': chunk['thinking_time'],
                         'total_thinking_time': chunk['total_thinking_time']})
                    display_turn_title(chunk)
                if 'final' in chunk and chunk['final']:
                    # user role would normally do this, but on final step needs to be here
                    st.session_state.messages.append(
                        {"role": "assistant", "content": current_assistant_message, 'final': False})
                    # last message, so won't reach user turn, so need to store final assistant message from parsing
                    st.session_state.messages.append(
                        {"role": "assistant", "content": chunk['content'], 'final': True})
                    display_final(chunk, can_rerun=True)

        elif chunk["role"] == "user":
            if current_assistant_message:
                st.session_state.messages.append(
                    {"role": "assistant", "content": current_assistant_message, 'final': chunk.get('final', False)})
            # Reset assistant message when user provides input
            # Display user message
            if not chunk["initial"] and not st.session_state.show_next:
                pass
            else:
                user_container = st.chat_message("user")
                with user_container:
                    st.markdown(chunk["content"].replace('\n', '  \n'), unsafe_allow_html=True)
            st.session_state.messages.append({"role": "user", "content": chunk["content"], 'initial': chunk["initial"]})

            st.session_state.turn_count += 1
            if current_assistant_message:
                assistant_placeholder = st.empty()  # Reset placeholder
                current_assistant_message = ""

        elif chunk["role"] == "action":
            if chunk["content"] in ["continue?"]:
                # Continue conversation button
                continue_clicked = st.button("Continue Conversation")
                st.session_state.waiting_for_continue = True
            st.session_state.turn_count += 1
            if current_assistant_message:
                st.session_state.messages.append({"role": "assistant", "content": current_assistant_message})
                assistant_placeholder = st.empty()  # Reset placeholder
                current_assistant_message = ""
            elif chunk["content"] == "end":
                break
        elif chunk["role"] == "usage":
            st.session_state.output_tokens += chunk["content"]["output_tokens"] if "output_tokens" in chunk[
                "content"] else 0
            st.session_state.input_tokens += chunk["content"]["input_tokens"] if "input_tokens" in chunk[
                "content"] else 0
            st.session_state.cache_creation_input_tokens += chunk["content"][
                "cache_creation_input_tokens"] if "cache_creation_input_tokens" in chunk["content"] else 0
            st.session_state.cache_read_input_tokens += chunk["content"][
                "cache_read_input_tokens"] if "cache_read_input_tokens" in chunk["content"] else 0

        time.sleep(0.001)  # Small delay to prevent excessive updates

except StopIteration:
    pass