File size: 3,988 Bytes
daa90f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
""" from https://github.com/keithito/tacotron """
"""
Cleaners are transformations that run over the input text at both training and eval time.
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
1. "english_cleaners" for English text
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
the symbols in symbols.py to match your data).
"""
import re
from unidecode import unidecode
from phonemizer import phonemize
from phonemizer.backend import EspeakBackend
backend = EspeakBackend("ca", preserve_punctuation=True, with_stress=True)
backend_en = EspeakBackend("en-us", preserve_punctuation=True, with_stress=True)
# Regular expression matching whitespace:
_whitespace_re = re.compile(r"\s+")
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "misess"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
]
]
def expand_abbreviations(text):
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
def expand_numbers(text):
return normalize_numbers(text)
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text)
def convert_to_ascii(text):
return unidecode(text)
def basic_cleaners(text):
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
text = lowercase(text)
text = collapse_whitespace(text)
return text
def transliteration_cleaners(text):
"""Pipeline for non-English text that transliterates to ASCII."""
text = convert_to_ascii(text)
text = lowercase(text)
text = collapse_whitespace(text)
return text
def english_cleaners(text):
"""Pipeline for English text, including abbreviation expansion."""
text = convert_to_ascii(text)
text = lowercase(text)
text = expand_abbreviations(text)
phonemes = phonemize(text, language="en-us", backend="espeak", strip=True)
phonemes = collapse_whitespace(phonemes)
return phonemes
def english_cleaners2(text):
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
text = convert_to_ascii(text)
text = lowercase(text)
text = expand_abbreviations(text)
phonemes = phonemize(
text,
language="en-us",
backend="espeak",
strip=True,
preserve_punctuation=True,
with_stress=True,
)
phonemes = collapse_whitespace(phonemes)
return phonemes
def english_cleaners3(text):
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
text = convert_to_ascii(text)
text = lowercase(text)
text = expand_abbreviations(text)
phonemes = backend_en.phonemize([text], strip=True)[0]
phonemes = collapse_whitespace(phonemes)
return phonemes
def catalan_cleaners(text):
"""Pipeline for catalan text, including punctuation + stress"""
#text = convert_to_ascii(text)
text = lowercase(text)
#text = expand_abbreviations(text)
phonemes = backend.phonemize([text], strip=True)[0]
phonemes = collapse_whitespace(phonemes)
return phonemes
|