Spaces:
Runtime error
Runtime error
File size: 9,570 Bytes
6cba6d8 4c8718d db29093 73c5116 6cba6d8 db29093 73c5116 db29093 6cba6d8 db29093 6cba6d8 db29093 6cba6d8 db29093 6cba6d8 73c5116 6cba6d8 db29093 6cba6d8 4c8718d 6cba6d8 359e6aa 6cba6d8 4c8718d 6cba6d8 73c5116 6cba6d8 db29093 6cba6d8 db29093 6cba6d8 db29093 6cba6d8 db51483 6cba6d8 db51483 6cba6d8 db51483 6cba6d8 db29093 6cba6d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import os
from dotenv import load_dotenv
import gradio as gr
from gradio.components import Textbox, Button, Slider, Checkbox
from AinaTheme import theme
from huggingface_hub import InferenceClient
from urllib.error import HTTPError
load_dotenv()
def generate(prompt, model_parameters):
try:
output = client.text_generation(prompt, **model_parameters, return_full_text=True)
return output
except HTTPError as err:
if err.code == 400:
gr.Warning("The inference endpoint is only available Monday through Friday, from 08:00 to 20:00 CET.")
except:
gr.Warning('Inference endpoint is not available right now. Please try again later.')
client = InferenceClient(
os.environ.get("HF_INFERENCE_ENDPOINT_URL"),
token=os.environ.get("HF_INFERENCE_ENDPOINT_TOKEN")
)
MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", default=100))
MAX_INPUT_CHARACTERS= int(os.environ.get("MAX_INPUT_CHARACTERS", default=100))
SHOW_MODEL_PARAMETERS_IN_UI = os.environ.get("SHOW_MODEL_PARAMETERS_IN_UI", default=True) == "True"
def submit_input(input_, max_new_tokens, repetition_penalty, top_k, top_p, do_sample, temperature):
if input_.strip() == "":
gr.Warning('Not possible to inference an empty input')
return None
model_parameters = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
"top_k": top_k,
"top_p": top_p,
"do_sample": do_sample,
"temperature": temperature
}
output = generate(input_, model_parameters)
return output
def change_interactive(text):
if len(text.strip()) > MAX_INPUT_CHARACTERS:
return gr.update(interactive = True), gr.update(interactive = False)
if (len(text) == 0):
return gr.update(interactive = True), gr.update(interactive = False)
return gr.update(interactive = True), gr.update(interactive = True)
def clear():
return (
None,
None,
gr.update(value=MAX_NEW_TOKENS),
gr.update(value=1.2),
gr.update(value=50),
gr.update(value=0.95),
gr.update(value=True),
gr.update(value=0.5),
)
def gradio_app():
with gr.Blocks(theme=theme) as demo:
with gr.Row():
with gr.Column(scale=0.1):
gr.Image("ginesta_small.jpg", elem_id="flor-banner", scale=1, height=256, width=256, show_label=False, show_download_button = False, show_share_button = False)
with gr.Column():
gr.Markdown(
"""# Flor-6.3B (experimental)
🪷 **[Flor](https://huggingface.co/projecte-aina/FLOR-6.3B)** is a 6.3B parameters multilingual Large Language Model (LLM) that has been trained on a massive mixture of Spanish, Catalan and English data. It is a new open-source LLM, licensed for both research and commercial use. It uses the [Bloom-7b](https://huggingface.co/bigscience/bloom-7b1) model as a starting point, a state-of-the-art multilingual LLM.
⚠️ **Limitations**: This version is for beta testing only. The content generated by these models is unsupervised and might be judged as inappropriate or offensive. Please bear this in mind when exploring this resource.
👀 **Learn more about Flor:** [HF official model card](https://huggingface.co/projecte-aina/FLOR-6.3B) and the [Instruct version](https://huggingface.co/projecte-aina/FLOR_63B_Instruit).
"""
)
with gr.Row(equal_height=True):
with gr.Column(variant="panel"):
placeholder_max_token = Textbox(
visible=False,
interactive=False,
value= MAX_INPUT_CHARACTERS
)
input_ = Textbox(
lines=11,
label="Input",
placeholder="e.g. El mercat del barri és fantàstic hi pots trobar."
)
with gr.Row(variant="panel", equal_height=True):
gr.HTML("""<span id="countertext" style="display: flex; justify-content: start; color:#ef4444; font-weight: bold;"></span>""")
gr.HTML(f"""<span id="counter" style="display: flex; justify-content: end;"> <span id="inputlenght">0</span> / {MAX_INPUT_CHARACTERS}</span>""")
with gr.Row(variant="panel"):
with gr.Accordion("Model parameters", open=False, visible=SHOW_MODEL_PARAMETERS_IN_UI):
max_new_tokens = Slider(
minimum=1,
maximum=200,
step=1,
value=MAX_NEW_TOKENS,
label="Max tokens"
)
repetition_penalty = Slider(
minimum=0.1,
maximum=10,
step=0.1,
value=1.2,
label="Repetition penalty"
)
top_k = Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Top k"
)
top_p = Slider(
minimum=0.01,
maximum=0.99,
value=0.95,
label="Top p"
)
do_sample = Checkbox(
value=True,
label="Do sample"
)
temperature = Slider(
minimum=0,
maximum=1,
value=0.5,
label="Temperature"
)
with gr.Column(variant="panel"):
output = Textbox(
lines=11,
label="Output",
interactive=False,
show_copy_button=True
)
with gr.Row(variant="panel"):
clear_btn = Button(
"Clear",
)
submit_btn = Button(
"Submit",
variant="primary",
interactive=False
)
with gr.Row():
with gr.Column(scale=0.5):
gr.Examples(
label="Short prompts:",
examples=[
["""La capital de Suècia"""],
],
inputs=[input_, max_new_tokens, repetition_penalty, top_k, top_p, do_sample, temperature],
outputs=output,
fn=submit_input,
)
gr.Examples(
label="Zero-shot prompts",
examples=[
["Tradueix del Castellà al Català la següent frase: \"Eso es pan comido.\" \nTraducció:"],
],
inputs=[input_, max_new_tokens, repetition_penalty, top_k, top_p, do_sample, temperature],
outputs=output,
fn=submit_input,
)
gr.Examples(
label="Few-Shot prompts:",
examples=[
["""Oració: Els sons melòdics produeixen una sensació de calma i benestar en l'individu. \nParàfrasi: La música és molt relaxant i reconfortant.\n----\nOració: L'animal domèstic mostra una gran alegria i satisfacció. \nParàfrasi: El gos és molt feliç. \n----\nOració: El vehicle es va trencar i vaig haver de contactar amb el servei de remolc perquè el transportés. \nParàfrasi: El cotxe es va trencar i vaig haver de trucar la grua. \n----\nOració: El professor va explicar els conceptes de manera clara i concisa. \nParàfrasi:"""],
],
inputs=[input_, max_new_tokens, repetition_penalty, top_k, top_p, do_sample, temperature],
outputs=output,
fn=submit_input,
)
input_.change(fn=change_interactive, inputs=[input_], outputs=[clear_btn, submit_btn], api_name=False)
input_.change(fn=None, inputs=[input_], api_name=False, js=f"""(i) => document.getElementById('countertext').textContent = i.length > {MAX_INPUT_CHARACTERS} && 'Max length {MAX_INPUT_CHARACTERS} characters. ' || '' """)
input_.change(fn=None, inputs=[input_, placeholder_max_token], api_name=False, js="""(i, m) => {
document.getElementById('inputlenght').textContent = i.length + ' '
document.getElementById('inputlenght').style.color = (i.length > m) ? "#ef4444" : "";
}""")
clear_btn.click(fn=clear, inputs=[], outputs=[input_, output, max_new_tokens, repetition_penalty, top_k, top_p, do_sample, temperature], queue=False, api_name=False)
submit_btn.click(fn=submit_input, inputs=[input_, max_new_tokens, repetition_penalty, top_k, top_p, do_sample, temperature], outputs=[output], api_name="get-results")
demo.launch(show_api=True)
if __name__ == "__main__":
gradio_app() |