File size: 5,317 Bytes
2217335
 
 
b380c20
2217335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b380c20
2217335
 
 
 
 
ba50c3d
c47af0a
 
 
2217335
c47af0a
 
 
 
 
 
2217335
 
 
 
 
 
 
f5848c0
2217335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd59c90
 
 
 
 
b62d821
 
 
 
 
 
 
 
 
 
fd59c90
 
 
 
 
 
2217335
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import gradio as gr
from gradio.components import Textbox, Button
from AinaTheme import theme
from urllib.error import HTTPError

from rag import RAG
from utils import setup

setup()


rag = RAG(
    hf_token=os.getenv("HF_TOKEN"),
    embeddings_model=os.getenv("EMBEDDINGS"), 
    model_name=os.getenv("MODEL"),   
    

)


def generate(prompt):
    try:
        output = rag.get_response(prompt)
        return output
    except HTTPError as err:
        if err.code == 400:
            gr.Warning(
                "The inference endpoint is only available Monday through Friday, from 08:00 to 20:00 CET."
            )
    except:
        gr.Warning(
            "Inference endpoint is not available right now. Please try again later."
        )


def submit_input(input_):
    if input_.strip() == "":
        gr.Warning("Not possible to inference an empty input")
        return None

    output = generate(input_)

    return output


def change_interactive(text):
    if len(text) == 0:
        return gr.update(interactive=True), gr.update(interactive=False)
    return gr.update(interactive=True), gr.update(interactive=True)


def clear():
    return (
        None,
        None,
    )


def gradio_app():
    with gr.Blocks(theme=theme) as demo:
        with gr.Row():
            with gr.Column(scale=0.1):
                gr.Image("rag_image.jpg", elem_id="flor-banner", scale=1, height=256, width=256, show_label=False, show_download_button = False, show_share_button = False)
            with gr.Column():
                gr.Markdown(
                    """# Demo de Retrieval-Augmented Generation per documents legals
                    🔍 **Retrieval-Augmented Generation** (RAG) és una tecnologia de IA que permet interrogar un repositori de documents amb preguntes 
                    en llenguatge natural, i combina tècniques de recuperació d'informació avançades amb models generatius per redactar una resposta 
                    fent servir només la informació existent en els documents del repositori. 
                        
                    🎯 **Objectiu:** Aquest és un primer demostrador amb la normativa vigent publicada al Diari Oficial de la Generalitat de Catalunya, en el 
                    repositori del EADOP (Entitat Autònoma del Diari Oficial i de Publicacions). Aquesta primera versió explora prop de 2000 documents en català, 
                    i genera la resposta fent servir el model Flor6.3b entrenat amb el dataset de QA generativa BSC-LT/RAG_Multilingual. 
                    
                    ⚠️ **Advertencies**: Primera versió experimental. El contingut generat per aquest model no està supervisat i pot ser incorrecte. 
                    Si us plau, tingueu-ho en compte quan exploreu aquest recurs.                 
                    """
                )
        with gr.Row(equal_height=True):
            with gr.Column(variant="panel"):
                input_ = Textbox(
                    lines=11,
                    label="Input",
                    placeholder="Quina és la finalitat del Servei Meteorològic de Catalunya?",
                    # value = "Quina és la finalitat del Servei Meteorològic de Catalunya?"
                )

            with gr.Column(variant="panel"):
                output = Textbox(
                    lines=11, label="Output", interactive=False, show_copy_button=True
                )
                with gr.Row(variant="panel"):
                    clear_btn = Button(
                        "Clear",
                    )
                    submit_btn = Button("Submit", variant="primary", interactive=False)

        input_.change(
            fn=change_interactive,
            inputs=[input_],
            outputs=[clear_btn, submit_btn],
            api_name=False,
        )

        input_.change(
            fn=None,
            inputs=[input_],
            api_name=False,
            js="""(i, m) => {
            document.getElementById('inputlenght').textContent = i.length + '  '
            document.getElementById('inputlenght').style.color =  (i.length > m) ? "#ef4444" : "";
        }""",
        )

        clear_btn.click(
            fn=clear, inputs=[], outputs=[input_, output], queue=False, api_name=False
        )
        submit_btn.click(
            fn=submit_input, inputs=[input_], outputs=[output], api_name="get-results"
        )

        with gr.Row():
            with gr.Column(scale=0.5):
                gr.Examples(
                    label="Short prompts:",
                    examples=[
                        [""" Què diu el decret sobre la senyalització de les begudes alcohòliques i el tabac a Catalunya? """],
                    ],
                    inputs=input_,
                    outputs=output,
                    fn=submit_input,
                )
                gr.Examples(
                    label="Short prompts:",
                    examples=[
                        [""" Quina és la finalitat del Servei Meterològic de Catalunya ? """],
                    ],
                    inputs=input_,
                    outputs=output,
                    fn=submit_input,
                )
                
        demo.launch(show_api=True)


if __name__ == "__main__":
    gradio_app()