Spaces:
Running
on
Zero
Running
on
Zero
update app [Bounding Boxes]
#6
by
prithivMLmods
- opened
app.py
CHANGED
@@ -15,7 +15,7 @@ import tempfile
|
|
15 |
import gradio as gr
|
16 |
import requests
|
17 |
import torch
|
18 |
-
from PIL import Image
|
19 |
import fitz
|
20 |
import numpy as np
|
21 |
|
@@ -130,7 +130,7 @@ def generate_and_preview_pdf(image: Image.Image, text_content: str, font_size: i
|
|
130 |
def process_document_stream(
|
131 |
image: Image.Image,
|
132 |
prompt_input: str,
|
133 |
-
image_scale_factor: float,
|
134 |
max_new_tokens: int,
|
135 |
temperature: float,
|
136 |
top_p: float,
|
@@ -138,7 +138,7 @@ def process_document_stream(
|
|
138 |
repetition_penalty: float
|
139 |
):
|
140 |
"""
|
141 |
-
Main function that handles model inference
|
142 |
"""
|
143 |
if image is None:
|
144 |
yield "Please upload an image.", ""
|
@@ -147,42 +147,29 @@ def process_document_stream(
|
|
147 |
yield "Please enter a prompt.", ""
|
148 |
return
|
149 |
|
150 |
-
# --- IMPLEMENTATION: Image Scaling based on user input ---
|
151 |
if image_scale_factor > 1.0:
|
152 |
try:
|
153 |
original_width, original_height = image.size
|
154 |
new_width = int(original_width * image_scale_factor)
|
155 |
new_height = int(original_height * image_scale_factor)
|
156 |
print(f"Scaling image from {image.size} to ({new_width}, {new_height}) with factor {image_scale_factor}.")
|
157 |
-
# Use a high-quality resampling filter for better results
|
158 |
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
159 |
except Exception as e:
|
160 |
print(f"Error during image scaling: {e}")
|
161 |
-
# Continue with the original image if scaling fails
|
162 |
pass
|
163 |
-
# --- END IMPLEMENTATION ---
|
164 |
|
165 |
temp_image_path = None
|
166 |
try:
|
167 |
-
# --- FIX: Save the PIL Image to a temporary file ---
|
168 |
-
# The model expects a file path, not a PIL object.
|
169 |
temp_dir = tempfile.gettempdir()
|
170 |
temp_image_path = os.path.join(temp_dir, f"temp_image_{uuid.uuid4()}.png")
|
171 |
image.save(temp_image_path)
|
172 |
|
173 |
-
# Prepare content for the model using the temporary file path
|
174 |
content = [
|
175 |
dict(type='image', image=temp_image_path),
|
176 |
dict(type='text', text=prompt_input)
|
177 |
]
|
178 |
-
messages = [
|
179 |
-
{
|
180 |
-
'role': 'user',
|
181 |
-
'content': content
|
182 |
-
}
|
183 |
-
]
|
184 |
|
185 |
-
# Prepare generation configuration from UI inputs
|
186 |
generation_config = {
|
187 |
'max_new_tokens': max_new_tokens,
|
188 |
'repetition_penalty': repetition_penalty,
|
@@ -192,21 +179,78 @@ def process_document_stream(
|
|
192 |
'do_sample': True if temperature > 0 else False
|
193 |
}
|
194 |
|
195 |
-
|
196 |
-
response = model.chat(
|
197 |
-
messages,
|
198 |
-
tokenizer,
|
199 |
-
image_processor,
|
200 |
-
generation_config
|
201 |
-
)
|
202 |
-
# Yield the full response at once
|
203 |
yield response, response
|
204 |
|
205 |
except Exception as e:
|
206 |
traceback.print_exc()
|
207 |
yield f"An error occurred during processing: {str(e)}", ""
|
208 |
finally:
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
if temp_image_path and os.path.exists(temp_image_path):
|
211 |
os.remove(temp_image_path)
|
212 |
|
@@ -233,29 +277,12 @@ def create_gradio_interface():
|
|
233 |
with gr.Row():
|
234 |
# Left Column (Inputs)
|
235 |
with gr.Column(scale=1):
|
236 |
-
gr.Textbox(
|
237 |
-
|
238 |
-
value="tencent/POINTS-Reader",
|
239 |
-
interactive=False
|
240 |
-
)
|
241 |
-
prompt_input = gr.Textbox(
|
242 |
-
label="Query Input",
|
243 |
-
placeholder="✦︎ Enter the prompt",
|
244 |
-
value="Perform OCR on the image precisely.",
|
245 |
-
)
|
246 |
image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
|
247 |
|
248 |
with gr.Accordion("Advanced Settings", open=False):
|
249 |
-
|
250 |
-
image_scale_factor = gr.Slider(
|
251 |
-
minimum=1.0,
|
252 |
-
maximum=3.0,
|
253 |
-
value=1.0,
|
254 |
-
step=0.1,
|
255 |
-
label="Image Upscale Factor",
|
256 |
-
info="Increases image size before processing. Can improve OCR on small text. Default: 1.0 (no change)."
|
257 |
-
)
|
258 |
-
# --- END NEW UI ELEMENT ---
|
259 |
max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=2048, step=256, label="Max New Tokens")
|
260 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.05, value=0.7)
|
261 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.8)
|
@@ -277,19 +304,21 @@ def create_gradio_interface():
|
|
277 |
with gr.Tab("📝 Extracted Content"):
|
278 |
raw_output_stream = gr.Textbox(label="Raw Model Output (max T ≤ 120s)", interactive=False, lines=15, show_copy_button=True)
|
279 |
with gr.Row():
|
280 |
-
examples = gr.Examples(
|
281 |
-
examples=["examples/1.jpeg",
|
282 |
-
"examples/2.jpeg",
|
283 |
-
"examples/3.jpeg",
|
284 |
-
"examples/4.jpeg",
|
285 |
-
"examples/5.jpeg"],
|
286 |
-
inputs=image_input, label="Examples"
|
287 |
-
)
|
288 |
gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/POINTS-Reader-OCR/discussions) | [prithivMLmods🤗](https://huggingface.co/prithivMLmods)")
|
289 |
|
290 |
with gr.Tab("📰 README.md"):
|
291 |
with gr.Accordion("(Result.md)", open=True):
|
292 |
markdown_output = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
with gr.Tab("📋 PDF Preview"):
|
295 |
generate_pdf_btn = gr.Button("📄 Generate PDF & Render", variant="primary")
|
@@ -298,15 +327,21 @@ def create_gradio_interface():
|
|
298 |
|
299 |
# Event Handlers
|
300 |
def clear_all_outputs():
|
301 |
-
|
|
|
302 |
|
303 |
process_btn.click(
|
304 |
fn=process_document_stream,
|
305 |
-
# --- UPDATE: Add the new slider to the inputs list ---
|
306 |
inputs=[image_input, prompt_input, image_scale_factor, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
307 |
outputs=[raw_output_stream, markdown_output]
|
308 |
)
|
309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
generate_pdf_btn.click(
|
311 |
fn=generate_and_preview_pdf,
|
312 |
inputs=[image_input, raw_output_stream, font_size, line_spacing, alignment, image_size],
|
@@ -315,7 +350,7 @@ def create_gradio_interface():
|
|
315 |
|
316 |
clear_btn.click(
|
317 |
clear_all_outputs,
|
318 |
-
outputs=[image_input, prompt_input, raw_output_stream, markdown_output, pdf_output_file, pdf_preview_gallery]
|
319 |
)
|
320 |
return demo
|
321 |
|
|
|
15 |
import gradio as gr
|
16 |
import requests
|
17 |
import torch
|
18 |
+
from PIL import Image, ImageDraw
|
19 |
import fitz
|
20 |
import numpy as np
|
21 |
|
|
|
130 |
def process_document_stream(
|
131 |
image: Image.Image,
|
132 |
prompt_input: str,
|
133 |
+
image_scale_factor: float,
|
134 |
max_new_tokens: int,
|
135 |
temperature: float,
|
136 |
top_p: float,
|
|
|
138 |
repetition_penalty: float
|
139 |
):
|
140 |
"""
|
141 |
+
Main function that handles model inference for general OCR.
|
142 |
"""
|
143 |
if image is None:
|
144 |
yield "Please upload an image.", ""
|
|
|
147 |
yield "Please enter a prompt.", ""
|
148 |
return
|
149 |
|
|
|
150 |
if image_scale_factor > 1.0:
|
151 |
try:
|
152 |
original_width, original_height = image.size
|
153 |
new_width = int(original_width * image_scale_factor)
|
154 |
new_height = int(original_height * image_scale_factor)
|
155 |
print(f"Scaling image from {image.size} to ({new_width}, {new_height}) with factor {image_scale_factor}.")
|
|
|
156 |
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
157 |
except Exception as e:
|
158 |
print(f"Error during image scaling: {e}")
|
|
|
159 |
pass
|
|
|
160 |
|
161 |
temp_image_path = None
|
162 |
try:
|
|
|
|
|
163 |
temp_dir = tempfile.gettempdir()
|
164 |
temp_image_path = os.path.join(temp_dir, f"temp_image_{uuid.uuid4()}.png")
|
165 |
image.save(temp_image_path)
|
166 |
|
|
|
167 |
content = [
|
168 |
dict(type='image', image=temp_image_path),
|
169 |
dict(type='text', text=prompt_input)
|
170 |
]
|
171 |
+
messages = [{'role': 'user', 'content': content}]
|
|
|
|
|
|
|
|
|
|
|
172 |
|
|
|
173 |
generation_config = {
|
174 |
'max_new_tokens': max_new_tokens,
|
175 |
'repetition_penalty': repetition_penalty,
|
|
|
179 |
'do_sample': True if temperature > 0 else False
|
180 |
}
|
181 |
|
182 |
+
response = model.chat(messages, tokenizer, image_processor, generation_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
yield response, response
|
184 |
|
185 |
except Exception as e:
|
186 |
traceback.print_exc()
|
187 |
yield f"An error occurred during processing: {str(e)}", ""
|
188 |
finally:
|
189 |
+
if temp_image_path and os.path.exists(temp_image_path):
|
190 |
+
os.remove(temp_image_path)
|
191 |
+
|
192 |
+
# --- Bounding Box Extraction Logic ---
|
193 |
+
@spaces.GPU
|
194 |
+
def extract_text_with_coordinates(image: Image.Image):
|
195 |
+
"""
|
196 |
+
Runs the model with a specific prompt to get OCR and bounding boxes,
|
197 |
+
then processes the output to create a visualization.
|
198 |
+
"""
|
199 |
+
if image is None:
|
200 |
+
raise gr.Error("Please upload an image first in the main tab.")
|
201 |
+
|
202 |
+
prompt = "Please perform OCR on the image and provide the bounding box for each recognized text line. The format should be 'text<box>x1, y1, x2, y2</box>'."
|
203 |
+
temp_image_path = None
|
204 |
+
try:
|
205 |
+
temp_dir = tempfile.gettempdir()
|
206 |
+
temp_image_path = os.path.join(temp_dir, f"temp_image_{uuid.uuid4()}.png")
|
207 |
+
image.save(temp_image_path)
|
208 |
+
|
209 |
+
content = [dict(type='image', image=temp_image_path), dict(type='text', text=prompt)]
|
210 |
+
messages = [{'role': 'user', 'content': content}]
|
211 |
+
generation_config = {'max_new_tokens': 4096}
|
212 |
+
|
213 |
+
response = model.chat(messages, tokenizer, image_processor, generation_config)
|
214 |
+
|
215 |
+
original_width, original_height = image.size
|
216 |
+
|
217 |
+
# Regex to find coordinates inside <box> tags
|
218 |
+
pattern_coords = r"<box>(\d+,\s*\d+,\s*\d+,\s*\d+)</box>"
|
219 |
+
# Regex to split the string by the full box tag to isolate text
|
220 |
+
pattern_splitter = r"<box>\d+,\s*\d+,\s*\d+,\s*\d+</box>"
|
221 |
+
|
222 |
+
bboxs_raw = re.findall(pattern_coords, response)
|
223 |
+
lines = [line.strip() for line in re.split(pattern_splitter, response) if line.strip()]
|
224 |
+
|
225 |
+
num_items = min(len(lines), len(bboxs_raw))
|
226 |
+
vis_image = image.copy()
|
227 |
+
draw = ImageDraw.Draw(vis_image)
|
228 |
+
output_text = ""
|
229 |
+
|
230 |
+
for i in range(num_items):
|
231 |
+
line_text = lines[i]
|
232 |
+
box_coords = [int(c.strip()) for c in bboxs_raw[i].split(',')]
|
233 |
+
|
234 |
+
if len(box_coords) == 4:
|
235 |
+
x0, y0, x1, y1 = box_coords
|
236 |
+
|
237 |
+
# Scale coordinates from the model's 1000px basis to the original image size
|
238 |
+
x0_s = int(x0 * original_width / 1000)
|
239 |
+
y0_s = int(y0 * original_height / 1000)
|
240 |
+
x1_s = int(x1 * original_width / 1000)
|
241 |
+
y1_s = int(y1 * original_height / 1000)
|
242 |
+
|
243 |
+
draw.rectangle([x0_s, y0_s, x1_s, y1_s], outline="red", width=2)
|
244 |
+
|
245 |
+
# Format output as a polygon (quadrilateral) and the extracted text
|
246 |
+
output_text += f"{x0_s},{y0_s},{x1_s},{y0_s},{x1_s},{y1_s},{x0_s},{y1_s},{line_text}\n"
|
247 |
+
|
248 |
+
return output_text.strip(), vis_image
|
249 |
+
|
250 |
+
except Exception as e:
|
251 |
+
traceback.print_exc()
|
252 |
+
return f"An error occurred: {str(e)}", None
|
253 |
+
finally:
|
254 |
if temp_image_path and os.path.exists(temp_image_path):
|
255 |
os.remove(temp_image_path)
|
256 |
|
|
|
277 |
with gr.Row():
|
278 |
# Left Column (Inputs)
|
279 |
with gr.Column(scale=1):
|
280 |
+
gr.Textbox(label="Model in Use ⚡", value="tencent/POINTS-Reader", interactive=False)
|
281 |
+
prompt_input = gr.Textbox(label="Query Input", placeholder="✦︎ Enter the prompt", value="Perform OCR on the image precisely.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
|
283 |
|
284 |
with gr.Accordion("Advanced Settings", open=False):
|
285 |
+
image_scale_factor = gr.Slider(minimum=1.0, maximum=3.0, value=1.0, step=0.1, label="Image Upscale Factor", info="Increases image size before processing. Can improve OCR on small text.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=2048, step=256, label="Max New Tokens")
|
287 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.05, value=0.7)
|
288 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.8)
|
|
|
304 |
with gr.Tab("📝 Extracted Content"):
|
305 |
raw_output_stream = gr.Textbox(label="Raw Model Output (max T ≤ 120s)", interactive=False, lines=15, show_copy_button=True)
|
306 |
with gr.Row():
|
307 |
+
examples = gr.Examples(examples=["examples/1.jpeg", "examples/2.jpeg", "examples/3.jpeg", "examples/4.jpeg", "examples/5.jpeg"], inputs=image_input, label="Examples")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/POINTS-Reader-OCR/discussions) | [prithivMLmods🤗](https://huggingface.co/prithivMLmods)")
|
309 |
|
310 |
with gr.Tab("📰 README.md"):
|
311 |
with gr.Accordion("(Result.md)", open=True):
|
312 |
markdown_output = gr.Markdown()
|
313 |
+
|
314 |
+
with gr.Tab("Bounding Boxes"):
|
315 |
+
gr.Markdown("Click the button to extract text and visualize its location on the image. This uses a specialized prompt to get coordinates from the model.")
|
316 |
+
with gr.Row():
|
317 |
+
with gr.Column(scale=1):
|
318 |
+
ocr_button = gr.Button("🔍 Extract Text with Coordinates", variant="primary")
|
319 |
+
ocr_text = gr.Textbox(label="Extracted Text with Coordinates", info="Format: x1,y1,x2,y2,x3,y3,x4,y4,text", lines=15, show_copy_button=True)
|
320 |
+
with gr.Column(scale=1):
|
321 |
+
ocr_vis = gr.Image(label="Visualization (Red boxes show detected text)")
|
322 |
|
323 |
with gr.Tab("📋 PDF Preview"):
|
324 |
generate_pdf_btn = gr.Button("📄 Generate PDF & Render", variant="primary")
|
|
|
327 |
|
328 |
# Event Handlers
|
329 |
def clear_all_outputs():
|
330 |
+
# Clear all input and output fields across all tabs
|
331 |
+
return None, "", "Raw output will appear here.", "", None, None, "", None
|
332 |
|
333 |
process_btn.click(
|
334 |
fn=process_document_stream,
|
|
|
335 |
inputs=[image_input, prompt_input, image_scale_factor, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
336 |
outputs=[raw_output_stream, markdown_output]
|
337 |
)
|
338 |
|
339 |
+
ocr_button.click(
|
340 |
+
fn=extract_text_with_coordinates,
|
341 |
+
inputs=[image_input],
|
342 |
+
outputs=[ocr_text, ocr_vis]
|
343 |
+
)
|
344 |
+
|
345 |
generate_pdf_btn.click(
|
346 |
fn=generate_and_preview_pdf,
|
347 |
inputs=[image_input, raw_output_stream, font_size, line_spacing, alignment, image_size],
|
|
|
350 |
|
351 |
clear_btn.click(
|
352 |
clear_all_outputs,
|
353 |
+
outputs=[image_input, prompt_input, raw_output_stream, markdown_output, pdf_output_file, pdf_preview_gallery, ocr_text, ocr_vis]
|
354 |
)
|
355 |
return demo
|
356 |
|