File size: 64,671 Bytes
33d99f2
 
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897409a
4dab15f
 
392ff83
4dab15f
 
 
 
 
 
 
c971ea2
4dab15f
392ff83
 
 
3536c5f
4dab15f
 
 
 
 
 
392ff83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6584c2
392ff83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6584c2
392ff83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d99f2
392ff83
 
 
 
 
b6584c2
392ff83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6584c2
392ff83
 
 
 
c6eda07
 
392ff83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6584c2
392ff83
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d99f2
b6584c2
4dab15f
33d99f2
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755826
4dab15f
 
 
 
 
 
 
 
 
1755826
4dab15f
 
 
 
 
 
 
 
 
 
 
 
33d99f2
4dab15f
 
 
 
 
 
 
 
 
 
 
b6584c2
 
4dab15f
 
392ff83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6584c2
392ff83
 
4dab15f
33d99f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dab15f
33d99f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d99f2
 
4dab15f
 
 
33d99f2
 
4dab15f
 
 
 
 
1755826
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af4e5fa
 
 
 
 
 
c6eda07
af4e5fa
 
 
c6eda07
af4e5fa
 
 
c6eda07
af4e5fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6eda07
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6eda07
4dab15f
 
 
 
 
 
 
 
 
 
 
 
af4e5fa
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392ff83
 
 
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7a0b1
4dab15f
 
 
 
 
4a7a0b1
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897409a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392ff83
897409a
 
 
392ff83
 
 
897409a
 
 
 
 
 
 
392ff83
 
 
 
897409a
 
 
392ff83
897409a
 
392ff83
897409a
 
4dab15f
 
 
 
 
 
1755826
4dab15f
897409a
4dab15f
 
 
 
 
 
 
897409a
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897409a
4dab15f
897409a
4dab15f
 
897409a
 
4dab15f
897409a
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aabbc45
c971ea2
4dab15f
 
 
 
 
 
 
 
 
c971ea2
4dab15f
 
c971ea2
4dab15f
 
 
c971ea2
 
 
aabbc45
 
 
 
 
4dab15f
c971ea2
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755826
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6584c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6584c2
 
 
 
 
 
 
 
 
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d99f2
 
 
 
 
4dab15f
 
 
 
 
c6eda07
 
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897409a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dab15f
c6eda07
 
 
 
4dab15f
 
af4e5fa
 
 
 
 
4dab15f
 
 
 
 
 
 
 
 
c6eda07
4dab15f
c6eda07
 
4dab15f
 
 
 
897409a
4dab15f
 
 
33d99f2
4dab15f
 
 
 
 
 
 
1755826
4dab15f
 
 
 
 
 
 
4a7a0b1
 
 
 
4dab15f
 
 
 
 
 
 
 
392ff83
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d99f2
4dab15f
 
33d99f2
 
4dab15f
 
 
b6584c2
4dab15f
 
 
392ff83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6584c2
392ff83
 
 
 
 
 
 
 
 
 
 
 
 
f0d11e3
392ff83
 
 
b6584c2
392ff83
33d99f2
4dab15f
b6584c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d99f2
b6584c2
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d99f2
 
392ff83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6584c2
33d99f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392ff83
 
4dab15f
cd53881
 
 
4dab15f
 
 
 
c971ea2
4dab15f
 
 
 
 
 
 
 
 
 
 
c971ea2
4dab15f
 
 
 
 
 
 
 
 
 
 
 
aabbc45
4dab15f
 
 
 
 
 
4a7a0b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
import threading
import queue
import re

import gc
import json
import os
import platform
import psutil
import random
import signal
import shutil
import subprocess
import sys
import tempfile
import time
from glob import glob

import click
import gradio as gr
import librosa
import numpy as np
import torch
import torchaudio
from datasets import Dataset as Dataset_
from datasets.arrow_writer import ArrowWriter
from safetensors.torch import save_file
from scipy.io import wavfile
from transformers import pipeline
from cached_path import cached_path
from f5_tts.api import F5TTS
from f5_tts.model.utils import convert_char_to_pinyin
from importlib.resources import files

training_process = None
system = platform.system()
python_executable = sys.executable or "python"
tts_api = None
last_checkpoint = ""
last_device = ""
last_ema = None


path_data = str(files("f5_tts").joinpath("../../data"))
path_project_ckpts = str(files("f5_tts").joinpath("../../ckpts"))
file_train = "src/f5_tts/train/finetune_cli.py"

device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"

pipe = None


# Save settings from a JSON file
def save_settings(
    project_name,
    exp_name,
    learning_rate,
    batch_size_per_gpu,
    batch_size_type,
    max_samples,
    grad_accumulation_steps,
    max_grad_norm,
    epochs,
    num_warmup_updates,
    save_per_updates,
    last_per_steps,
    finetune,
    file_checkpoint_train,
    tokenizer_type,
    tokenizer_file,
    mixed_precision,
    logger,
):
    path_project = os.path.join(path_project_ckpts, project_name)
    os.makedirs(path_project, exist_ok=True)
    file_setting = os.path.join(path_project, "setting.json")

    settings = {
        "exp_name": exp_name,
        "learning_rate": learning_rate,
        "batch_size_per_gpu": batch_size_per_gpu,
        "batch_size_type": batch_size_type,
        "max_samples": max_samples,
        "grad_accumulation_steps": grad_accumulation_steps,
        "max_grad_norm": max_grad_norm,
        "epochs": epochs,
        "num_warmup_updates": num_warmup_updates,
        "save_per_updates": save_per_updates,
        "last_per_steps": last_per_steps,
        "finetune": finetune,
        "file_checkpoint_train": file_checkpoint_train,
        "tokenizer_type": tokenizer_type,
        "tokenizer_file": tokenizer_file,
        "mixed_precision": mixed_precision,
        "logger": logger,
    }
    with open(file_setting, "w") as f:
        json.dump(settings, f, indent=4)
    return "Settings saved!"


# Load settings from a JSON file
def load_settings(project_name):
    project_name = project_name.replace("_pinyin", "").replace("_char", "")
    path_project = os.path.join(path_project_ckpts, project_name)
    file_setting = os.path.join(path_project, "setting.json")

    if not os.path.isfile(file_setting):
        settings = {
            "exp_name": "F5TTS_Base",
            "learning_rate": 1e-05,
            "batch_size_per_gpu": 1000,
            "batch_size_type": "frame",
            "max_samples": 64,
            "grad_accumulation_steps": 1,
            "max_grad_norm": 1,
            "epochs": 100,
            "num_warmup_updates": 2,
            "save_per_updates": 300,
            "last_per_steps": 100,
            "finetune": True,
            "file_checkpoint_train": "",
            "tokenizer_type": "pinyin",
            "tokenizer_file": "",
            "mixed_precision": "none",
            "logger": "wandb",
        }
        return (
            settings["exp_name"],
            settings["learning_rate"],
            settings["batch_size_per_gpu"],
            settings["batch_size_type"],
            settings["max_samples"],
            settings["grad_accumulation_steps"],
            settings["max_grad_norm"],
            settings["epochs"],
            settings["num_warmup_updates"],
            settings["save_per_updates"],
            settings["last_per_steps"],
            settings["finetune"],
            settings["file_checkpoint_train"],
            settings["tokenizer_type"],
            settings["tokenizer_file"],
            settings["mixed_precision"],
            settings["logger"],
        )

    with open(file_setting, "r") as f:
        settings = json.load(f)
        if "logger" not in settings:
            settings["logger"] = "wandb"
    return (
        settings["exp_name"],
        settings["learning_rate"],
        settings["batch_size_per_gpu"],
        settings["batch_size_type"],
        settings["max_samples"],
        settings["grad_accumulation_steps"],
        settings["max_grad_norm"],
        settings["epochs"],
        settings["num_warmup_updates"],
        settings["save_per_updates"],
        settings["last_per_steps"],
        settings["finetune"],
        settings["file_checkpoint_train"],
        settings["tokenizer_type"],
        settings["tokenizer_file"],
        settings["mixed_precision"],
        settings["logger"],
    )


# Load metadata
def get_audio_duration(audio_path):
    """Calculate the duration of an audio file."""
    audio, sample_rate = torchaudio.load(audio_path)
    num_channels = audio.shape[0]
    return audio.shape[1] / (sample_rate * num_channels)


def clear_text(text):
    """Clean and prepare text by lowering the case and stripping whitespace."""
    return text.lower().strip()


def get_rms(
    y,
    frame_length=2048,
    hop_length=512,
    pad_mode="constant",
):  # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
    padding = (int(frame_length // 2), int(frame_length // 2))
    y = np.pad(y, padding, mode=pad_mode)

    axis = -1
    # put our new within-frame axis at the end for now
    out_strides = y.strides + tuple([y.strides[axis]])
    # Reduce the shape on the framing axis
    x_shape_trimmed = list(y.shape)
    x_shape_trimmed[axis] -= frame_length - 1
    out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
    xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
    if axis < 0:
        target_axis = axis - 1
    else:
        target_axis = axis + 1
    xw = np.moveaxis(xw, -1, target_axis)
    # Downsample along the target axis
    slices = [slice(None)] * xw.ndim
    slices[axis] = slice(0, None, hop_length)
    x = xw[tuple(slices)]

    # Calculate power
    power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)

    return np.sqrt(power)


class Slicer:  # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
    def __init__(
        self,
        sr: int,
        threshold: float = -40.0,
        min_length: int = 2000,
        min_interval: int = 300,
        hop_size: int = 20,
        max_sil_kept: int = 2000,
    ):
        if not min_length >= min_interval >= hop_size:
            raise ValueError("The following condition must be satisfied: min_length >= min_interval >= hop_size")
        if not max_sil_kept >= hop_size:
            raise ValueError("The following condition must be satisfied: max_sil_kept >= hop_size")
        min_interval = sr * min_interval / 1000
        self.threshold = 10 ** (threshold / 20.0)
        self.hop_size = round(sr * hop_size / 1000)
        self.win_size = min(round(min_interval), 4 * self.hop_size)
        self.min_length = round(sr * min_length / 1000 / self.hop_size)
        self.min_interval = round(min_interval / self.hop_size)
        self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)

    def _apply_slice(self, waveform, begin, end):
        if len(waveform.shape) > 1:
            return waveform[:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)]
        else:
            return waveform[begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)]

    # @timeit
    def slice(self, waveform):
        if len(waveform.shape) > 1:
            samples = waveform.mean(axis=0)
        else:
            samples = waveform
        if samples.shape[0] <= self.min_length:
            return [waveform]
        rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
        sil_tags = []
        silence_start = None
        clip_start = 0
        for i, rms in enumerate(rms_list):
            # Keep looping while frame is silent.
            if rms < self.threshold:
                # Record start of silent frames.
                if silence_start is None:
                    silence_start = i
                continue
            # Keep looping while frame is not silent and silence start has not been recorded.
            if silence_start is None:
                continue
            # Clear recorded silence start if interval is not enough or clip is too short
            is_leading_silence = silence_start == 0 and i > self.max_sil_kept
            need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
            if not is_leading_silence and not need_slice_middle:
                silence_start = None
                continue
            # Need slicing. Record the range of silent frames to be removed.
            if i - silence_start <= self.max_sil_kept:
                pos = rms_list[silence_start : i + 1].argmin() + silence_start
                if silence_start == 0:
                    sil_tags.append((0, pos))
                else:
                    sil_tags.append((pos, pos))
                clip_start = pos
            elif i - silence_start <= self.max_sil_kept * 2:
                pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
                pos += i - self.max_sil_kept
                pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
                pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                    clip_start = pos_r
                else:
                    sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
                    clip_start = max(pos_r, pos)
            else:
                pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
                pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                else:
                    sil_tags.append((pos_l, pos_r))
                clip_start = pos_r
            silence_start = None
        # Deal with trailing silence.
        total_frames = rms_list.shape[0]
        if silence_start is not None and total_frames - silence_start >= self.min_interval:
            silence_end = min(total_frames, silence_start + self.max_sil_kept)
            pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
            sil_tags.append((pos, total_frames + 1))
        # Apply and return slices.
        ####ιŸ³ι’‘+衷始既间+η»ˆζ­’ζ—Άι—΄
        if len(sil_tags) == 0:
            return [[waveform, 0, int(total_frames * self.hop_size)]]
        else:
            chunks = []
            if sil_tags[0][0] > 0:
                chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]), 0, int(sil_tags[0][0] * self.hop_size)])
            for i in range(len(sil_tags) - 1):
                chunks.append(
                    [
                        self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),
                        int(sil_tags[i][1] * self.hop_size),
                        int(sil_tags[i + 1][0] * self.hop_size),
                    ]
                )
            if sil_tags[-1][1] < total_frames:
                chunks.append(
                    [
                        self._apply_slice(waveform, sil_tags[-1][1], total_frames),
                        int(sil_tags[-1][1] * self.hop_size),
                        int(total_frames * self.hop_size),
                    ]
                )
            return chunks


# terminal
def terminate_process_tree(pid, including_parent=True):
    try:
        parent = psutil.Process(pid)
    except psutil.NoSuchProcess:
        # Process already terminated
        return

    children = parent.children(recursive=True)
    for child in children:
        try:
            os.kill(child.pid, signal.SIGTERM)  # or signal.SIGKILL
        except OSError:
            pass
    if including_parent:
        try:
            os.kill(parent.pid, signal.SIGTERM)  # or signal.SIGKILL
        except OSError:
            pass


def terminate_process(pid):
    if system == "Windows":
        cmd = f"taskkill /t /f /pid {pid}"
        os.system(cmd)
    else:
        terminate_process_tree(pid)


def start_training(
    dataset_name="",
    exp_name="F5TTS_Base",
    learning_rate=1e-4,
    batch_size_per_gpu=400,
    batch_size_type="frame",
    max_samples=64,
    grad_accumulation_steps=1,
    max_grad_norm=1.0,
    epochs=11,
    num_warmup_updates=200,
    save_per_updates=400,
    last_per_steps=800,
    finetune=True,
    file_checkpoint_train="",
    tokenizer_type="pinyin",
    tokenizer_file="",
    mixed_precision="fp16",
    stream=False,
    logger="wandb",
):
    global training_process, tts_api, stop_signal

    if tts_api is not None:
        del tts_api
        gc.collect()
        torch.cuda.empty_cache()
        tts_api = None

    path_project = os.path.join(path_data, dataset_name)

    if not os.path.isdir(path_project):
        yield (
            f"There is not project with name {dataset_name}",
            gr.update(interactive=True),
            gr.update(interactive=False),
        )
        return

    file_raw = os.path.join(path_project, "raw.arrow")
    if not os.path.isfile(file_raw):
        yield f"There is no file {file_raw}", gr.update(interactive=True), gr.update(interactive=False)
        return

    # Check if a training process is already running
    if training_process is not None:
        return "Train run already!", gr.update(interactive=False), gr.update(interactive=True)

    yield "start train", gr.update(interactive=False), gr.update(interactive=False)

    # Command to run the training script with the specified arguments

    if tokenizer_file == "":
        if dataset_name.endswith("_pinyin"):
            tokenizer_type = "pinyin"
        elif dataset_name.endswith("_char"):
            tokenizer_type = "char"
    else:
        tokenizer_type = "custom"

    dataset_name = dataset_name.replace("_pinyin", "").replace("_char", "")

    if mixed_precision != "none":
        fp16 = f"--mixed_precision={mixed_precision}"
    else:
        fp16 = ""

    cmd = (
        f"accelerate launch {fp16} {file_train} --exp_name {exp_name} "
        f"--learning_rate {learning_rate} "
        f"--batch_size_per_gpu {batch_size_per_gpu} "
        f"--batch_size_type {batch_size_type} "
        f"--max_samples {max_samples} "
        f"--grad_accumulation_steps {grad_accumulation_steps} "
        f"--max_grad_norm {max_grad_norm} "
        f"--epochs {epochs} "
        f"--num_warmup_updates {num_warmup_updates} "
        f"--save_per_updates {save_per_updates} "
        f"--last_per_steps {last_per_steps} "
        f"--dataset_name {dataset_name}"
    )

    if finetune:
        cmd += f" --finetune {finetune}"

    if file_checkpoint_train != "":
        cmd += f" --file_checkpoint_train {file_checkpoint_train}"

    if tokenizer_file != "":
        cmd += f" --tokenizer_path {tokenizer_file}"

    cmd += f" --tokenizer {tokenizer_type} "

    cmd += f" --log_samples True --logger {logger} "

    print(cmd)

    save_settings(
        dataset_name,
        exp_name,
        learning_rate,
        batch_size_per_gpu,
        batch_size_type,
        max_samples,
        grad_accumulation_steps,
        max_grad_norm,
        epochs,
        num_warmup_updates,
        save_per_updates,
        last_per_steps,
        finetune,
        file_checkpoint_train,
        tokenizer_type,
        tokenizer_file,
        mixed_precision,
        logger,
    )

    try:
        if not stream:
            # Start the training process
            training_process = subprocess.Popen(cmd, shell=True)

            time.sleep(5)
            yield "train start", gr.update(interactive=False), gr.update(interactive=True)

            # Wait for the training process to finish
            training_process.wait()
        else:

            def stream_output(pipe, output_queue):
                try:
                    for line in iter(pipe.readline, ""):
                        output_queue.put(line)
                except Exception as e:
                    output_queue.put(f"Error reading pipe: {str(e)}")
                finally:
                    pipe.close()

            env = os.environ.copy()
            env["PYTHONUNBUFFERED"] = "1"

            training_process = subprocess.Popen(
                cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1, env=env
            )
            yield "Training started...", gr.update(interactive=False), gr.update(interactive=True)

            stdout_queue = queue.Queue()
            stderr_queue = queue.Queue()

            stdout_thread = threading.Thread(target=stream_output, args=(training_process.stdout, stdout_queue))
            stderr_thread = threading.Thread(target=stream_output, args=(training_process.stderr, stderr_queue))
            stdout_thread.daemon = True
            stderr_thread.daemon = True
            stdout_thread.start()
            stderr_thread.start()
            stop_signal = False
            while True:
                if stop_signal:
                    training_process.terminate()
                    time.sleep(0.5)
                    if training_process.poll() is None:
                        training_process.kill()
                    yield "Training stopped by user.", gr.update(interactive=True), gr.update(interactive=False)
                    break

                process_status = training_process.poll()

                # Handle stdout
                try:
                    while True:
                        output = stdout_queue.get_nowait()
                        print(output, end="")
                        match = re.search(
                            r"Epoch (\d+)/(\d+):\s+(\d+)%\|.*\[(\d+:\d+)<.*?loss=(\d+\.\d+), step=(\d+)", output
                        )
                        if match:
                            current_epoch = match.group(1)
                            total_epochs = match.group(2)
                            percent_complete = match.group(3)
                            elapsed_time = match.group(4)
                            loss = match.group(5)
                            current_step = match.group(6)
                            message = (
                                f"Epoch: {current_epoch}/{total_epochs}, "
                                f"Progress: {percent_complete}%, "
                                f"Elapsed Time: {elapsed_time}, "
                                f"Loss: {loss}, "
                                f"Step: {current_step}"
                            )
                            yield message, gr.update(interactive=False), gr.update(interactive=True)
                        elif output.strip():
                            yield output, gr.update(interactive=False), gr.update(interactive=True)
                except queue.Empty:
                    pass

                # Handle stderr
                try:
                    while True:
                        error_output = stderr_queue.get_nowait()
                        print(error_output, end="")
                        if error_output.strip():
                            yield f"{error_output.strip()}", gr.update(interactive=False), gr.update(interactive=True)
                except queue.Empty:
                    pass

                if process_status is not None and stdout_queue.empty() and stderr_queue.empty():
                    if process_status != 0:
                        yield (
                            f"Process crashed with exit code {process_status}!",
                            gr.update(interactive=False),
                            gr.update(interactive=True),
                        )
                    else:
                        yield "Training complete!", gr.update(interactive=False), gr.update(interactive=True)
                    break

                # Small sleep to prevent CPU thrashing
                time.sleep(0.1)

            # Clean up
            training_process.stdout.close()
            training_process.stderr.close()
            training_process.wait()

        time.sleep(1)

        if training_process is None:
            text_info = "train stop"
        else:
            text_info = "train complete !"

    except Exception as e:  # Catch all exceptions
        # Ensure that we reset the training process variable in case of an error
        text_info = f"An error occurred: {str(e)}"

    training_process = None

    yield text_info, gr.update(interactive=True), gr.update(interactive=False)


def stop_training():
    global training_process, stop_signal

    if training_process is None:
        return "Train not run !", gr.update(interactive=True), gr.update(interactive=False)
    terminate_process_tree(training_process.pid)
    # training_process = None
    stop_signal = True
    return "train stop", gr.update(interactive=True), gr.update(interactive=False)


def get_list_projects():
    project_list = []
    for folder in os.listdir(path_data):
        path_folder = os.path.join(path_data, folder)
        if not os.path.isdir(path_folder):
            continue
        folder = folder.lower()
        if folder == "emilia_zh_en_pinyin":
            continue
        project_list.append(folder)

    projects_selelect = None if not project_list else project_list[-1]

    return project_list, projects_selelect


def create_data_project(name, tokenizer_type):
    name += "_" + tokenizer_type
    os.makedirs(os.path.join(path_data, name), exist_ok=True)
    os.makedirs(os.path.join(path_data, name, "dataset"), exist_ok=True)
    project_list, projects_selelect = get_list_projects()
    return gr.update(choices=project_list, value=name)


def transcribe(file_audio, language="english"):
    global pipe

    if pipe is None:
        pipe = pipeline(
            "automatic-speech-recognition",
            model="openai/whisper-large-v3-turbo",
            torch_dtype=torch.float16,
            device=device,
        )

    text_transcribe = pipe(
        file_audio,
        chunk_length_s=30,
        batch_size=128,
        generate_kwargs={"task": "transcribe", "language": language},
        return_timestamps=False,
    )["text"].strip()
    return text_transcribe


def transcribe_all(name_project, audio_files, language, user=False, progress=gr.Progress()):
    path_project = os.path.join(path_data, name_project)
    path_dataset = os.path.join(path_project, "dataset")
    path_project_wavs = os.path.join(path_project, "wavs")
    file_metadata = os.path.join(path_project, "metadata.csv")

    if not user:
        if audio_files is None:
            return "You need to load an audio file."

    if os.path.isdir(path_project_wavs):
        shutil.rmtree(path_project_wavs)

    if os.path.isfile(file_metadata):
        os.remove(file_metadata)

    os.makedirs(path_project_wavs, exist_ok=True)

    if user:
        file_audios = [
            file
            for format in ("*.wav", "*.ogg", "*.opus", "*.mp3", "*.flac")
            for file in glob(os.path.join(path_dataset, format))
        ]
        if file_audios == []:
            return "No audio file was found in the dataset."
    else:
        file_audios = audio_files

    alpha = 0.5
    _max = 1.0
    slicer = Slicer(24000)

    num = 0
    error_num = 0
    data = ""
    for file_audio in progress.tqdm(file_audios, desc="transcribe files", total=len((file_audios))):
        audio, _ = librosa.load(file_audio, sr=24000, mono=True)

        list_slicer = slicer.slice(audio)
        for chunk, start, end in progress.tqdm(list_slicer, total=len(list_slicer), desc="slicer files"):
            name_segment = os.path.join(f"segment_{num}")
            file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav")

            tmp_max = np.abs(chunk).max()
            if tmp_max > 1:
                chunk /= tmp_max
            chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk
            wavfile.write(file_segment, 24000, (chunk * 32767).astype(np.int16))

            try:
                text = transcribe(file_segment, language)
                text = text.lower().strip().replace('"', "")

                data += f"{name_segment}|{text}\n"

                num += 1
            except:  # noqa: E722
                error_num += 1

    with open(file_metadata, "w", encoding="utf-8-sig") as f:
        f.write(data)

    if error_num != []:
        error_text = f"\nerror files : {error_num}"
    else:
        error_text = ""

    return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}"


def format_seconds_to_hms(seconds):
    hours = int(seconds / 3600)
    minutes = int((seconds % 3600) / 60)
    seconds = seconds % 60
    return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds))


def get_correct_audio_path(
    audio_input,
    base_path="wavs",
    supported_formats=("wav", "mp3", "aac", "flac", "m4a", "alac", "ogg", "aiff", "wma", "amr"),
):
    file_audio = None

    # Helper function to check if file has a supported extension
    def has_supported_extension(file_name):
        return any(file_name.endswith(f".{ext}") for ext in supported_formats)

    # Case 1: If it's a full path with a valid extension, use it directly
    if os.path.isabs(audio_input) and has_supported_extension(audio_input):
        file_audio = audio_input

    # Case 2: If it has a supported extension but is not a full path
    elif has_supported_extension(audio_input) and not os.path.isabs(audio_input):
        file_audio = os.path.join(base_path, audio_input)
        print("2")

    # Case 3: If only the name is given (no extension and not a full path)
    elif not has_supported_extension(audio_input) and not os.path.isabs(audio_input):
        print("3")
        for ext in supported_formats:
            potential_file = os.path.join(base_path, f"{audio_input}.{ext}")
            if os.path.exists(potential_file):
                file_audio = potential_file
                break
        else:
            file_audio = os.path.join(base_path, f"{audio_input}.{supported_formats[0]}")
    return file_audio


def create_metadata(name_project, ch_tokenizer, progress=gr.Progress()):
    path_project = os.path.join(path_data, name_project)
    path_project_wavs = os.path.join(path_project, "wavs")
    file_metadata = os.path.join(path_project, "metadata.csv")
    file_raw = os.path.join(path_project, "raw.arrow")
    file_duration = os.path.join(path_project, "duration.json")
    file_vocab = os.path.join(path_project, "vocab.txt")

    if not os.path.isfile(file_metadata):
        return "The file was not found in " + file_metadata, ""

    with open(file_metadata, "r", encoding="utf-8-sig") as f:
        data = f.read()

    audio_path_list = []
    text_list = []
    duration_list = []

    count = data.split("\n")
    lenght = 0
    result = []
    error_files = []
    text_vocab_set = set()
    for line in progress.tqdm(data.split("\n"), total=count):
        sp_line = line.split("|")
        if len(sp_line) != 2:
            continue
        name_audio, text = sp_line[:2]

        file_audio = get_correct_audio_path(name_audio, path_project_wavs)

        if not os.path.isfile(file_audio):
            error_files.append([file_audio, "error path"])
            continue

        try:
            duration = get_audio_duration(file_audio)
        except Exception as e:
            error_files.append([file_audio, "duration"])
            print(f"Error processing {file_audio}: {e}")
            continue

        if duration < 1 or duration > 25:
            error_files.append([file_audio, "duration < 1 or > 25 "])
            continue
        if len(text) < 4:
            error_files.append([file_audio, "very small text len 3"])
            continue

        text = clear_text(text)
        text = convert_char_to_pinyin([text], polyphone=True)[0]

        audio_path_list.append(file_audio)
        duration_list.append(duration)
        text_list.append(text)

        result.append({"audio_path": file_audio, "text": text, "duration": duration})
        if ch_tokenizer:
            text_vocab_set.update(list(text))

        lenght += duration

    if duration_list == []:
        return f"Error: No audio files found in the specified path : {path_project_wavs}", ""

    min_second = round(min(duration_list), 2)
    max_second = round(max(duration_list), 2)

    with ArrowWriter(path=file_raw, writer_batch_size=1) as writer:
        for line in progress.tqdm(result, total=len(result), desc="prepare data"):
            writer.write(line)

    with open(file_duration, "w") as f:
        json.dump({"duration": duration_list}, f, ensure_ascii=False)

    new_vocal = ""
    if not ch_tokenizer:
        if not os.path.isfile(file_vocab):
            file_vocab_finetune = os.path.join(path_data, "Emilia_ZH_EN_pinyin/vocab.txt")
            if not os.path.isfile(file_vocab_finetune):
                return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!", ""
            shutil.copy2(file_vocab_finetune, file_vocab)

        with open(file_vocab, "r", encoding="utf-8-sig") as f:
            vocab_char_map = {}
            for i, char in enumerate(f):
                vocab_char_map[char[:-1]] = i
        vocab_size = len(vocab_char_map)

    else:
        with open(file_vocab, "w", encoding="utf-8-sig") as f:
            for vocab in sorted(text_vocab_set):
                f.write(vocab + "\n")
                new_vocal += vocab + "\n"
        vocab_size = len(text_vocab_set)

    if error_files != []:
        error_text = "\n".join([" = ".join(item) for item in error_files])
    else:
        error_text = ""

    return (
        f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\nvocab : {vocab_size}\n{error_text}",
        new_vocal,
    )


def check_user(value):
    return gr.update(visible=not value), gr.update(visible=value)


def calculate_train(
    name_project,
    batch_size_type,
    max_samples,
    learning_rate,
    num_warmup_updates,
    save_per_updates,
    last_per_steps,
    finetune,
):
    path_project = os.path.join(path_data, name_project)
    file_duraction = os.path.join(path_project, "duration.json")

    if not os.path.isfile(file_duraction):
        return (
            1000,
            max_samples,
            num_warmup_updates,
            save_per_updates,
            last_per_steps,
            "project not found !",
            learning_rate,
        )

    with open(file_duraction, "r") as file:
        data = json.load(file)

    duration_list = data["duration"]
    samples = len(duration_list)
    hours = sum(duration_list) / 3600

    # if torch.cuda.is_available():
    # gpu_properties = torch.cuda.get_device_properties(0)
    # total_memory = gpu_properties.total_memory / (1024**3)
    # elif torch.backends.mps.is_available():
    # total_memory = psutil.virtual_memory().available / (1024**3)

    if torch.cuda.is_available():
        gpu_count = torch.cuda.device_count()
        total_memory = 0
        for i in range(gpu_count):
            gpu_properties = torch.cuda.get_device_properties(i)
            total_memory += gpu_properties.total_memory / (1024**3)  # in GB

    elif torch.backends.mps.is_available():
        gpu_count = 1
        total_memory = psutil.virtual_memory().available / (1024**3)

    if batch_size_type == "frame":
        batch = int(total_memory * 0.5)
        batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch)
        batch_size_per_gpu = int(38400 / batch)
    else:
        batch_size_per_gpu = int(total_memory / 8)
        batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu)
        batch = batch_size_per_gpu

    if batch_size_per_gpu <= 0:
        batch_size_per_gpu = 1

    if samples < 64:
        max_samples = int(samples * 0.25)
    else:
        max_samples = 64

    num_warmup_updates = int(samples * 0.05)
    save_per_updates = int(samples * 0.10)
    last_per_steps = int(save_per_updates * 0.25)

    max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples)
    num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates)
    save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates)
    last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps)
    if last_per_steps <= 0:
        last_per_steps = 2

    total_hours = hours
    mel_hop_length = 256
    mel_sampling_rate = 24000

    # target
    wanted_max_updates = 1000000

    # train params
    gpus = gpu_count
    frames_per_gpu = batch_size_per_gpu  # 8 * 38400 = 307200
    grad_accum = 1

    # intermediate
    mini_batch_frames = frames_per_gpu * grad_accum * gpus
    mini_batch_hours = mini_batch_frames * mel_hop_length / mel_sampling_rate / 3600
    updates_per_epoch = total_hours / mini_batch_hours
    # steps_per_epoch = updates_per_epoch * grad_accum
    epochs = wanted_max_updates / updates_per_epoch

    if finetune:
        learning_rate = 1e-5
    else:
        learning_rate = 7.5e-5

    return (
        batch_size_per_gpu,
        max_samples,
        num_warmup_updates,
        save_per_updates,
        last_per_steps,
        samples,
        learning_rate,
        int(epochs),
    )


def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str, safetensors: bool) -> str:
    try:
        checkpoint = torch.load(checkpoint_path)
        print("Original Checkpoint Keys:", checkpoint.keys())

        ema_model_state_dict = checkpoint.get("ema_model_state_dict", None)
        if ema_model_state_dict is None:
            return "No 'ema_model_state_dict' found in the checkpoint."

        if safetensors:
            new_checkpoint_path = new_checkpoint_path.replace(".pt", ".safetensors")
            save_file(ema_model_state_dict, new_checkpoint_path)
        else:
            new_checkpoint_path = new_checkpoint_path.replace(".safetensors", ".pt")
            new_checkpoint = {"ema_model_state_dict": ema_model_state_dict}
            torch.save(new_checkpoint, new_checkpoint_path)

        return f"New checkpoint saved at: {new_checkpoint_path}"

    except Exception as e:
        return f"An error occurred: {e}"


def expand_model_embeddings(ckpt_path, new_ckpt_path, num_new_tokens=42):
    seed = 666
    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    ckpt = torch.load(ckpt_path, map_location="cpu")

    ema_sd = ckpt.get("ema_model_state_dict", {})
    embed_key_ema = "ema_model.transformer.text_embed.text_embed.weight"
    old_embed_ema = ema_sd[embed_key_ema]

    vocab_old = old_embed_ema.size(0)
    embed_dim = old_embed_ema.size(1)
    vocab_new = vocab_old + num_new_tokens

    def expand_embeddings(old_embeddings):
        new_embeddings = torch.zeros((vocab_new, embed_dim))
        new_embeddings[:vocab_old] = old_embeddings
        new_embeddings[vocab_old:] = torch.randn((num_new_tokens, embed_dim))
        return new_embeddings

    ema_sd[embed_key_ema] = expand_embeddings(ema_sd[embed_key_ema])

    torch.save(ckpt, new_ckpt_path)

    return vocab_new


def vocab_count(text):
    return str(len(text.split(",")))


def vocab_extend(project_name, symbols, model_type):
    if symbols == "":
        return "Symbols empty!"

    name_project = project_name
    path_project = os.path.join(path_data, name_project)
    file_vocab_project = os.path.join(path_project, "vocab.txt")

    file_vocab = os.path.join(path_data, "Emilia_ZH_EN_pinyin/vocab.txt")
    if not os.path.isfile(file_vocab):
        return f"the file {file_vocab} not found !"

    symbols = symbols.split(",")
    if symbols == []:
        return "Symbols to extend not found."

    with open(file_vocab, "r", encoding="utf-8-sig") as f:
        data = f.read()
        vocab = data.split("\n")
    vocab_check = set(vocab)

    miss_symbols = []
    for item in symbols:
        item = item.replace(" ", "")
        if item in vocab_check:
            continue
        miss_symbols.append(item)

    if miss_symbols == []:
        return "Symbols are okay no need to extend."

    size_vocab = len(vocab)
    vocab.pop()
    for item in miss_symbols:
        vocab.append(item)

    vocab.append("")

    with open(file_vocab_project, "w", encoding="utf-8") as f:
        f.write("\n".join(vocab))

    if model_type == "F5-TTS":
        ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
    else:
        ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))

    vocab_size_new = len(miss_symbols)

    dataset_name = name_project.replace("_pinyin", "").replace("_char", "")
    new_ckpt_path = os.path.join(path_project_ckpts, dataset_name)
    os.makedirs(new_ckpt_path, exist_ok=True)
    new_ckpt_file = os.path.join(new_ckpt_path, "model_1200000.pt")

    size = expand_model_embeddings(ckpt_path, new_ckpt_file, num_new_tokens=vocab_size_new)

    vocab_new = "\n".join(miss_symbols)
    return f"vocab old size : {size_vocab}\nvocab new size : {size}\nvocab add : {vocab_size_new}\nnew symbols :\n{vocab_new}"


def vocab_check(project_name):
    name_project = project_name
    path_project = os.path.join(path_data, name_project)

    file_metadata = os.path.join(path_project, "metadata.csv")

    file_vocab = os.path.join(path_data, "Emilia_ZH_EN_pinyin/vocab.txt")
    if not os.path.isfile(file_vocab):
        return f"the file {file_vocab} not found !", ""

    with open(file_vocab, "r", encoding="utf-8-sig") as f:
        data = f.read()
        vocab = data.split("\n")
        vocab = set(vocab)

    if not os.path.isfile(file_metadata):
        return f"the file {file_metadata} not found !", ""

    with open(file_metadata, "r", encoding="utf-8-sig") as f:
        data = f.read()

    miss_symbols = []
    miss_symbols_keep = {}
    for item in data.split("\n"):
        sp = item.split("|")
        if len(sp) != 2:
            continue

        text = sp[1].lower().strip()

        for t in text:
            if t not in vocab and t not in miss_symbols_keep:
                miss_symbols.append(t)
                miss_symbols_keep[t] = t

    if miss_symbols == []:
        vocab_miss = ""
        info = "You can train using your language !"
    else:
        vocab_miss = ",".join(miss_symbols)
        info = f"The following symbols are missing in your language {len(miss_symbols)}\n\n"

    return info, vocab_miss


def get_random_sample_prepare(project_name):
    name_project = project_name
    path_project = os.path.join(path_data, name_project)
    file_arrow = os.path.join(path_project, "raw.arrow")
    if not os.path.isfile(file_arrow):
        return "", None
    dataset = Dataset_.from_file(file_arrow)
    random_sample = dataset.shuffle(seed=random.randint(0, 1000)).select([0])
    text = "[" + " , ".join(["' " + t + " '" for t in random_sample["text"][0]]) + "]"
    audio_path = random_sample["audio_path"][0]
    return text, audio_path


def get_random_sample_transcribe(project_name):
    name_project = project_name
    path_project = os.path.join(path_data, name_project)
    file_metadata = os.path.join(path_project, "metadata.csv")
    if not os.path.isfile(file_metadata):
        return "", None

    data = ""
    with open(file_metadata, "r", encoding="utf-8-sig") as f:
        data = f.read()

    list_data = []
    for item in data.split("\n"):
        sp = item.split("|")
        if len(sp) != 2:
            continue
        list_data.append([os.path.join(path_project, "wavs", sp[0] + ".wav"), sp[1]])

    if list_data == []:
        return "", None

    random_item = random.choice(list_data)

    return random_item[1], random_item[0]


def get_random_sample_infer(project_name):
    text, audio = get_random_sample_transcribe(project_name)
    return (
        text,
        text,
        audio,
    )


def infer(project, file_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step, use_ema):
    global last_checkpoint, last_device, tts_api, last_ema

    if not os.path.isfile(file_checkpoint):
        return None, "checkpoint not found!"

    if training_process is not None:
        device_test = "cpu"
    else:
        device_test = None

    if last_checkpoint != file_checkpoint or last_device != device_test or last_ema != use_ema:
        if last_checkpoint != file_checkpoint:
            last_checkpoint = file_checkpoint

        if last_device != device_test:
            last_device = device_test

        if last_ema != use_ema:
            last_ema = use_ema

        vocab_file = os.path.join(path_data, project, "vocab.txt")

        tts_api = F5TTS(
            model_type=exp_name, ckpt_file=file_checkpoint, vocab_file=vocab_file, device=device_test, use_ema=use_ema
        )

        print("update >> ", device_test, file_checkpoint, use_ema)

    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        tts_api.infer(gen_text=gen_text, ref_text=ref_text, ref_file=ref_audio, nfe_step=nfe_step, file_wave=f.name)
        return f.name, tts_api.device


def check_finetune(finetune):
    return gr.update(interactive=finetune), gr.update(interactive=finetune), gr.update(interactive=finetune)


def get_checkpoints_project(project_name, is_gradio=True):
    if project_name is None:
        return [], ""
    project_name = project_name.replace("_pinyin", "").replace("_char", "")

    if os.path.isdir(path_project_ckpts):
        files_checkpoints = glob(os.path.join(path_project_ckpts, project_name, "*.pt"))
        files_checkpoints = sorted(
            files_checkpoints,
            key=lambda x: int(os.path.basename(x).split("_")[1].split(".")[0])
            if os.path.basename(x) != "model_last.pt"
            else float("inf"),
        )
    else:
        files_checkpoints = []

    selelect_checkpoint = None if not files_checkpoints else files_checkpoints[0]

    if is_gradio:
        return gr.update(choices=files_checkpoints, value=selelect_checkpoint)

    return files_checkpoints, selelect_checkpoint


def get_audio_project(project_name, is_gradio=True):
    if project_name is None:
        return [], ""
    project_name = project_name.replace("_pinyin", "").replace("_char", "")

    if os.path.isdir(path_project_ckpts):
        files_audios = glob(os.path.join(path_project_ckpts, project_name, "samples", "*.wav"))
        files_audios = sorted(files_audios, key=lambda x: int(os.path.basename(x).split("_")[1].split(".")[0]))

        files_audios = [item.replace("_gen.wav", "") for item in files_audios if item.endswith("_gen.wav")]
    else:
        files_audios = []

    selelect_checkpoint = None if not files_audios else files_audios[0]

    if is_gradio:
        return gr.update(choices=files_audios, value=selelect_checkpoint)

    return files_audios, selelect_checkpoint


def get_gpu_stats():
    gpu_stats = ""

    if torch.cuda.is_available():
        gpu_count = torch.cuda.device_count()
        for i in range(gpu_count):
            gpu_name = torch.cuda.get_device_name(i)
            gpu_properties = torch.cuda.get_device_properties(i)
            total_memory = gpu_properties.total_memory / (1024**3)  # in GB
            allocated_memory = torch.cuda.memory_allocated(i) / (1024**2)  # in MB
            reserved_memory = torch.cuda.memory_reserved(i) / (1024**2)  # in MB

            gpu_stats += (
                f"GPU {i} Name: {gpu_name}\n"
                f"Total GPU memory (GPU {i}): {total_memory:.2f} GB\n"
                f"Allocated GPU memory (GPU {i}): {allocated_memory:.2f} MB\n"
                f"Reserved GPU memory (GPU {i}): {reserved_memory:.2f} MB\n\n"
            )

    elif torch.backends.mps.is_available():
        gpu_count = 1
        gpu_stats += "MPS GPU\n"
        total_memory = psutil.virtual_memory().total / (
            1024**3
        )  # Total system memory (MPS doesn't have its own memory)
        allocated_memory = 0
        reserved_memory = 0

        gpu_stats += (
            f"Total system memory: {total_memory:.2f} GB\n"
            f"Allocated GPU memory (MPS): {allocated_memory:.2f} MB\n"
            f"Reserved GPU memory (MPS): {reserved_memory:.2f} MB\n"
        )

    else:
        gpu_stats = "No GPU available"

    return gpu_stats


def get_cpu_stats():
    cpu_usage = psutil.cpu_percent(interval=1)
    memory_info = psutil.virtual_memory()
    memory_used = memory_info.used / (1024**2)
    memory_total = memory_info.total / (1024**2)
    memory_percent = memory_info.percent

    pid = os.getpid()
    process = psutil.Process(pid)
    nice_value = process.nice()

    cpu_stats = (
        f"CPU Usage: {cpu_usage:.2f}%\n"
        f"System Memory: {memory_used:.2f} MB used / {memory_total:.2f} MB total ({memory_percent}% used)\n"
        f"Process Priority (Nice value): {nice_value}"
    )

    return cpu_stats


def get_combined_stats():
    gpu_stats = get_gpu_stats()
    cpu_stats = get_cpu_stats()
    combined_stats = f"### GPU Stats\n{gpu_stats}\n\n### CPU Stats\n{cpu_stats}"
    return combined_stats


def get_audio_select(file_sample):
    select_audio_ref = file_sample
    select_audio_gen = file_sample

    if file_sample is not None:
        select_audio_ref += "_ref.wav"
        select_audio_gen += "_gen.wav"

    return select_audio_ref, select_audio_gen


with gr.Blocks() as app:
    gr.Markdown(
        """
# E2/F5 TTS AUTOMATIC FINETUNE 

This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:

* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)

The checkpoints support English and Chinese.

for tutorial and updates check here (https://github.com/SWivid/F5-TTS/discussions/143)
"""
    )

    with gr.Row():
        projects, projects_selelect = get_list_projects()
        tokenizer_type = gr.Radio(label="Tokenizer Type", choices=["pinyin", "char"], value="pinyin")
        project_name = gr.Textbox(label="project name", value="my_speak")
        bt_create = gr.Button("create new project")

    with gr.Row():
        cm_project = gr.Dropdown(
            choices=projects, value=projects_selelect, label="Project", allow_custom_value=True, scale=6
        )
        ch_refresh_project = gr.Button("refresh", scale=1)

    bt_create.click(fn=create_data_project, inputs=[project_name, tokenizer_type], outputs=[cm_project])

    with gr.Tabs():
        with gr.TabItem("transcribe Data"):
            gr.Markdown("""```plaintext 
Skip this step if you have your dataset, metadata.csv, and a folder wavs with all the audio files.                 
```""")

            ch_manual = gr.Checkbox(label="audio from path", value=False)

            mark_info_transcribe = gr.Markdown(
                """```plaintext    
     Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory. 
                 
     my_speak/
     β”‚
     └── dataset/
         β”œβ”€β”€ audio1.wav
         └── audio2.wav
         ...
     ```""",
                visible=False,
            )

            audio_speaker = gr.File(label="voice", type="filepath", file_count="multiple")
            txt_lang = gr.Text(label="Language", value="english")
            bt_transcribe = bt_create = gr.Button("transcribe")
            txt_info_transcribe = gr.Text(label="info", value="")
            bt_transcribe.click(
                fn=transcribe_all,
                inputs=[cm_project, audio_speaker, txt_lang, ch_manual],
                outputs=[txt_info_transcribe],
            )
            ch_manual.change(fn=check_user, inputs=[ch_manual], outputs=[audio_speaker, mark_info_transcribe])

            random_sample_transcribe = gr.Button("random sample")

            with gr.Row():
                random_text_transcribe = gr.Text(label="Text")
                random_audio_transcribe = gr.Audio(label="Audio", type="filepath")

            random_sample_transcribe.click(
                fn=get_random_sample_transcribe,
                inputs=[cm_project],
                outputs=[random_text_transcribe, random_audio_transcribe],
            )

        with gr.TabItem("vocab check"):
            gr.Markdown("""```plaintext 
check the vocabulary for fine-tuning Emilia_ZH_EN to ensure all symbols are included. for finetune new language
```""")

            check_button = gr.Button("check vocab")
            txt_info_check = gr.Text(label="info", value="")

            gr.Markdown("""```plaintext 
Using the extended model, you can fine-tune to a new language that is missing symbols in the vocab , this create a new model with a new vocabulary size and save it in your ckpts/project folder.
```""")

            exp_name_extend = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")

            with gr.Row():
                txt_extend = gr.Textbox(
                    label="Symbols",
                    value="",
                    placeholder="To add new symbols, make sure to use ',' for each symbol",
                    scale=6,
                )
                txt_count_symbol = gr.Textbox(label="new size vocab", value="", scale=1)

            extend_button = gr.Button("Extended")
            txt_info_extend = gr.Text(label="info", value="")

            txt_extend.change(vocab_count, inputs=[txt_extend], outputs=[txt_count_symbol])
            check_button.click(fn=vocab_check, inputs=[cm_project], outputs=[txt_info_check, txt_extend])
            extend_button.click(
                fn=vocab_extend, inputs=[cm_project, txt_extend, exp_name_extend], outputs=[txt_info_extend]
            )

        with gr.TabItem("prepare Data"):
            gr.Markdown("""```plaintext 
Skip this step if you have your dataset, raw.arrow , duraction.json and vocab.txt
```""")

            gr.Markdown(
                """```plaintext    
     place all your wavs folder and your metadata.csv file in {your name project}  

     suport format for audio "wav", "mp3", "aac", "flac", "m4a", "alac", "ogg", "aiff", "wma", "amr"

     example wav format                               
     my_speak/
     β”‚
     β”œβ”€β”€ wavs/
     β”‚   β”œβ”€β”€ audio1.wav
     β”‚   └── audio2.wav
     |   ...
     β”‚
     └── metadata.csv
      
     file format metadata.csv 

     audio1|text1 or audio1.wav|text1 or your_path/audio1.wav|text1 
     audio2|text1 or audio2.wav|text1 or your_path/audio1.wav|text1 
     ...

     ```"""
            )
            ch_tokenizern = gr.Checkbox(label="create vocabulary", value=False, visible=False)
            bt_prepare = bt_create = gr.Button("prepare")
            txt_info_prepare = gr.Text(label="info", value="")
            txt_vocab_prepare = gr.Text(label="vocab", value="")

            bt_prepare.click(
                fn=create_metadata, inputs=[cm_project, ch_tokenizern], outputs=[txt_info_prepare, txt_vocab_prepare]
            )

            random_sample_prepare = gr.Button("random sample")

            with gr.Row():
                random_text_prepare = gr.Text(label="Tokenizer")
                random_audio_prepare = gr.Audio(label="Audio", type="filepath")

            random_sample_prepare.click(
                fn=get_random_sample_prepare, inputs=[cm_project], outputs=[random_text_prepare, random_audio_prepare]
            )

        with gr.TabItem("train Data"):
            gr.Markdown("""```plaintext 
The auto-setting is still experimental. Please make sure that the epochs , save per updates , and last per steps are set correctly, or change them manually as needed.
If you encounter a memory error, try reducing the batch size per GPU to a smaller number.
```""")
            with gr.Row():
                bt_calculate = bt_create = gr.Button("Auto Settings")
                lb_samples = gr.Label(label="samples")
                batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame")

            with gr.Row():
                ch_finetune = bt_create = gr.Checkbox(label="finetune", value=True)
                tokenizer_file = gr.Textbox(label="Tokenizer File", value="")
                file_checkpoint_train = gr.Textbox(label="Path to the preetrain checkpoint ", value="")

            with gr.Row():
                exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
                learning_rate = gr.Number(label="Learning Rate", value=1e-5, step=1e-5)

            with gr.Row():
                batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000)
                max_samples = gr.Number(label="Max Samples", value=64)

            with gr.Row():
                grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1)
                max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0)

            with gr.Row():
                epochs = gr.Number(label="Epochs", value=10)
                num_warmup_updates = gr.Number(label="Warmup Updates", value=2)

            with gr.Row():
                save_per_updates = gr.Number(label="Save per Updates", value=300)
                last_per_steps = gr.Number(label="Last per Steps", value=100)

            with gr.Row():
                mixed_precision = gr.Radio(label="mixed_precision", choices=["none", "fp16", "fpb16"], value="none")
                cd_logger = gr.Radio(label="logger", choices=["wandb", "tensorboard"], value="wandb")
                start_button = gr.Button("Start Training")
                stop_button = gr.Button("Stop Training", interactive=False)

            if projects_selelect is not None:
                (
                    exp_namev,
                    learning_ratev,
                    batch_size_per_gpuv,
                    batch_size_typev,
                    max_samplesv,
                    grad_accumulation_stepsv,
                    max_grad_normv,
                    epochsv,
                    num_warmupv_updatesv,
                    save_per_updatesv,
                    last_per_stepsv,
                    finetunev,
                    file_checkpoint_trainv,
                    tokenizer_typev,
                    tokenizer_filev,
                    mixed_precisionv,
                    cd_loggerv,
                ) = load_settings(projects_selelect)
                exp_name.value = exp_namev
                learning_rate.value = learning_ratev
                batch_size_per_gpu.value = batch_size_per_gpuv
                batch_size_type.value = batch_size_typev
                max_samples.value = max_samplesv
                grad_accumulation_steps.value = grad_accumulation_stepsv
                max_grad_norm.value = max_grad_normv
                epochs.value = epochsv
                num_warmup_updates.value = num_warmupv_updatesv
                save_per_updates.value = save_per_updatesv
                last_per_steps.value = last_per_stepsv
                ch_finetune.value = finetunev
                file_checkpoint_train.value = file_checkpoint_trainv
                tokenizer_type.value = tokenizer_typev
                tokenizer_file.value = tokenizer_filev
                mixed_precision.value = mixed_precisionv
                cd_logger.value = cd_loggerv

            ch_stream = gr.Checkbox(label="stream output experiment.", value=True)
            txt_info_train = gr.Text(label="info", value="")

            list_audios, select_audio = get_audio_project(projects_selelect, False)

            select_audio_ref = select_audio
            select_audio_gen = select_audio

            if select_audio is not None:
                select_audio_ref += "_ref.wav"
                select_audio_gen += "_gen.wav"

            with gr.Row():
                ch_list_audio = gr.Dropdown(
                    choices=list_audios,
                    value=select_audio,
                    label="audios",
                    allow_custom_value=True,
                    scale=6,
                    interactive=True,
                )
                bt_stream_audio = gr.Button("refresh", scale=1)
                bt_stream_audio.click(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
                cm_project.change(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])

            with gr.Row():
                audio_ref_stream = gr.Audio(label="original", type="filepath", value=select_audio_ref)
                audio_gen_stream = gr.Audio(label="generate", type="filepath", value=select_audio_gen)

            ch_list_audio.change(
                fn=get_audio_select,
                inputs=[ch_list_audio],
                outputs=[audio_ref_stream, audio_gen_stream],
            )

            start_button.click(
                fn=start_training,
                inputs=[
                    cm_project,
                    exp_name,
                    learning_rate,
                    batch_size_per_gpu,
                    batch_size_type,
                    max_samples,
                    grad_accumulation_steps,
                    max_grad_norm,
                    epochs,
                    num_warmup_updates,
                    save_per_updates,
                    last_per_steps,
                    ch_finetune,
                    file_checkpoint_train,
                    tokenizer_type,
                    tokenizer_file,
                    mixed_precision,
                    ch_stream,
                    cd_logger,
                ],
                outputs=[txt_info_train, start_button, stop_button],
            )
            stop_button.click(fn=stop_training, outputs=[txt_info_train, start_button, stop_button])

            bt_calculate.click(
                fn=calculate_train,
                inputs=[
                    cm_project,
                    batch_size_type,
                    max_samples,
                    learning_rate,
                    num_warmup_updates,
                    save_per_updates,
                    last_per_steps,
                    ch_finetune,
                ],
                outputs=[
                    batch_size_per_gpu,
                    max_samples,
                    num_warmup_updates,
                    save_per_updates,
                    last_per_steps,
                    lb_samples,
                    learning_rate,
                    epochs,
                ],
            )

            ch_finetune.change(
                check_finetune, inputs=[ch_finetune], outputs=[file_checkpoint_train, tokenizer_file, tokenizer_type]
            )

            def setup_load_settings():
                output_components = [
                    exp_name,
                    learning_rate,
                    batch_size_per_gpu,
                    batch_size_type,
                    max_samples,
                    grad_accumulation_steps,
                    max_grad_norm,
                    epochs,
                    num_warmup_updates,
                    save_per_updates,
                    last_per_steps,
                    ch_finetune,
                    file_checkpoint_train,
                    tokenizer_type,
                    tokenizer_file,
                    mixed_precision,
                    cd_logger,
                ]

                return output_components

            outputs = setup_load_settings()

            cm_project.change(
                fn=load_settings,
                inputs=[cm_project],
                outputs=outputs,
            )

            ch_refresh_project.click(
                fn=load_settings,
                inputs=[cm_project],
                outputs=outputs,
            )

        with gr.TabItem("test model"):
            gr.Markdown("""```plaintext 
SOS : check the use_ema setting (True or False) for your model to see what works best for you. 
```""")
            exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
            list_checkpoints, checkpoint_select = get_checkpoints_project(projects_selelect, False)

            nfe_step = gr.Number(label="n_step", value=32)
            ch_use_ema = gr.Checkbox(label="use ema", value=True)
            with gr.Row():
                cm_checkpoint = gr.Dropdown(
                    choices=list_checkpoints, value=checkpoint_select, label="checkpoints", allow_custom_value=True
                )
                bt_checkpoint_refresh = gr.Button("refresh")

            random_sample_infer = gr.Button("random sample")

            ref_text = gr.Textbox(label="ref text")
            ref_audio = gr.Audio(label="audio ref", type="filepath")
            gen_text = gr.Textbox(label="gen text")

            random_sample_infer.click(
                fn=get_random_sample_infer, inputs=[cm_project], outputs=[ref_text, gen_text, ref_audio]
            )

            with gr.Row():
                txt_info_gpu = gr.Textbox("", label="device")
                check_button_infer = gr.Button("infer")

            gen_audio = gr.Audio(label="audio gen", type="filepath")

            check_button_infer.click(
                fn=infer,
                inputs=[cm_project, cm_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step, ch_use_ema],
                outputs=[gen_audio, txt_info_gpu],
            )

            bt_checkpoint_refresh.click(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
            cm_project.change(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])

        with gr.TabItem("reduse checkpoint"):
            gr.Markdown("""```plaintext 
Reduce the model size from 5GB to 1.3GB. The new checkpoint can be used for inference or fine-tuning afterward, but it cannot be used to continue training..
```""")
            txt_path_checkpoint = gr.Text(label="path checkpoint :")
            txt_path_checkpoint_small = gr.Text(label="path output :")
            ch_safetensors = gr.Checkbox(label="safetensors", value="")
            txt_info_reduse = gr.Text(label="info", value="")
            reduse_button = gr.Button("reduse")
            reduse_button.click(
                fn=extract_and_save_ema_model,
                inputs=[txt_path_checkpoint, txt_path_checkpoint_small, ch_safetensors],
                outputs=[txt_info_reduse],
            )

        with gr.TabItem("system info"):
            output_box = gr.Textbox(label="GPU and CPU Information", lines=20)

            def update_stats():
                return get_combined_stats()

            update_button = gr.Button("Update Stats")
            update_button.click(fn=update_stats, outputs=output_box)

            def auto_update():
                yield gr.update(value=update_stats())

            gr.update(fn=auto_update, inputs=[], outputs=output_box)


@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option(
    "--share",
    "-s",
    default=False,
    is_flag=True,
    help="Share the app via Gradio share link",
)
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
def main(port, host, share, api):
    global app
    print("Starting app...")
    app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api)


if __name__ == "__main__":
    main()