Spaces:
Sleeping
Sleeping
File size: 16,921 Bytes
45d10c4 a00beed d22f052 79b97e2 45d10c4 d22f052 45d10c4 8fe6e3e 45d10c4 8fe6e3e 45d10c4 79b97e2 45d10c4 2333c59 350b1a0 79b97e2 e81407b 9df8406 a00beed d22f052 a00beed 350b1a0 a00beed d22f052 a00beed 1f1f784 b472976 a00beed 45d10c4 79b97e2 45d10c4 9df8406 a00beed 9df8406 6f614b5 9df8406 d22f052 9df8406 6f614b5 45d10c4 350b1a0 45d10c4 350b1a0 45d10c4 350b1a0 45d10c4 ff03afa 45d10c4 350b1a0 1c49ee1 79b97e2 45d10c4 8fe6e3e 2333c59 350b1a0 2333c59 eb8fa16 2333c59 f22250e 2333c59 8fe6e3e 350b1a0 8fe6e3e 350b1a0 1c49ee1 350b1a0 8fe6e3e 2333c59 350b1a0 2333c59 350b1a0 2333c59 8fe6e3e 2333c59 350b1a0 2333c59 350b1a0 2333c59 350b1a0 2333c59 8fe6e3e 2333c59 8fe6e3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import nltk
import torch.nn.functional as F
import nltk
from scipy.special import softmax
import yaml
from utils import *
import joblib
from optimum.bettertransformer import BetterTransformer
import gc
from cleantext import clean
import gradio as gr
from tqdm.auto import tqdm
from transformers import pipeline
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import nltk
from nltk.tokenize import sent_tokenize
from optimum.pipelines import pipeline
with open("config.yaml", "r") as file:
params = yaml.safe_load(file)
nltk.download("punkt")
nltk.download("stopwords")
device_needed = "cuda" if torch.cuda.is_available() else "cpu"
device = 'cpu'
text_bc_model_path = params["TEXT_BC_MODEL_PATH"]
text_mc_model_path = params["TEXT_MC_MODEL_PATH"]
text_quillbot_model_path = params["TEXT_QUILLBOT_MODEL_PATH"]
text_1on1_models = params["TEXT_1ON1_MODEL"]
quillbot_labels = params["QUILLBOT_LABELS"]
mc_label_map = params["MC_OUTPUT_LABELS"]
text_1on1_label_map = params["1ON1_OUTPUT_LABELS"]
mc_token_size = int(params["MC_TOKEN_SIZE"])
bc_token_size = int(params["BC_TOKEN_SIZE"])
bias_checker_model_name = params['BIAS_CHECKER_MODEL_PATH']
bias_corrector_model_name = params['BIAS_CORRECTOR_MODEL_PATH']
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
text_bc_model = AutoModelForSequenceClassification.from_pretrained(
text_bc_model_path
).to(device)
text_mc_tokenizer = AutoTokenizer.from_pretrained(text_mc_model_path)
text_mc_model = AutoModelForSequenceClassification.from_pretrained(
text_mc_model_path
).to(device)
quillbot_tokenizer = AutoTokenizer.from_pretrained(text_quillbot_model_path)
quillbot_model = AutoModelForSequenceClassification.from_pretrained(
text_quillbot_model_path
).to(device)
tokenizers_1on1 = {}
models_1on1 = {}
for model_name, model in zip(mc_label_map, text_1on1_models):
tokenizers_1on1[model_name] = AutoTokenizer.from_pretrained(model)
models_1on1[model_name] = (
AutoModelForSequenceClassification.from_pretrained(model).to(device)
)
# proxy models for explainability
mini_bc_model_name = "polygraf-ai/bc-model-bert-mini"
bc_tokenizer_mini = AutoTokenizer.from_pretrained(mini_bc_model_name)
bc_model_mini = AutoModelForSequenceClassification.from_pretrained(
mini_bc_model_name
).to(device_needed)
mini_humanizer_model_name = "polygraf-ai/quillbot-detector-bert-mini-9K"
humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(
mini_humanizer_model_name
)
humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(
mini_humanizer_model_name
).to(device_needed)
bc_model_mini = BetterTransformer.transform(bc_model_mini)
humanizer_model_mini = BetterTransformer.transform(humanizer_model_mini)
text_bc_model = BetterTransformer.transform(text_bc_model)
text_mc_model = BetterTransformer.transform(text_mc_model)
quillbot_model = BetterTransformer.transform(quillbot_model)
# bias_model_checker = AutoModelForSequenceClassification.from_pretrained(bias_checker_model_name)
# tokenizer = AutoTokenizer.from_pretrained(bias_checker_model_name)
# bias_model_checker = BetterTransformer.transform(bias_model_checker, keep_original_model=False)
# bias_checker = pipeline(
# "text-classification",
# model=bias_checker_model_name,
# tokenizer=bias_checker_model_name,
# )
# gc.collect()
# bias_corrector = pipeline( "text2text-generation", model=bias_corrector_model_name, accelerator="ort")
# model score calibration
iso_reg = joblib.load("isotonic_regression_model.joblib")
def split_text(text: str) -> list:
sentences = sent_tokenize(text)
return [[sentence] for sentence in sentences]
def correct_text(text: str, bias_checker, bias_corrector, separator: str = " ") -> tuple:
sentence_batches = split_text(text)
corrected_text = []
corrections = []
for batch in tqdm(sentence_batches, total=len(sentence_batches), desc="correcting text.."):
raw_text = " ".join(batch)
results = bias_checker(raw_text)
if results[0]["label"] != "LABEL_1" or (results[0]["label"] == "LABEL_1" and results[0]["score"] < 0.9):
corrected_batch = bias_corrector(raw_text)
corrected_version = corrected_batch[0]["generated_text"]
corrected_text.append(corrected_version)
corrections.append((raw_text, corrected_version))
else:
corrected_text.append(raw_text)
corrected_text = separator.join(corrected_text)
return corrected_text, corrections
def update(text: str):
text = clean(text, lower=False)
corrected_text, corrections = correct_text(text, bias_checker, bias_corrector)
corrections_display = "\n\n".join([f"Original: {orig}\nCorrected: {corr}" for orig, corr in corrections])
return corrected_text, corrections_display
def split_text_allow_complete_sentences_nltk(
text,
max_length=256,
tolerance=30,
min_last_segment_length=100,
type_det="bc",
):
sentences = nltk.sent_tokenize(text)
segments = []
current_segment = []
current_length = 0
if type_det == "bc":
tokenizer = text_bc_tokenizer
max_length = bc_token_size
elif type_det == "mc":
tokenizer = text_mc_tokenizer
max_length = mc_token_size
for sentence in sentences:
tokens = tokenizer.tokenize(sentence)
sentence_length = len(tokens)
if current_length + sentence_length <= max_length + tolerance - 2:
current_segment.append(sentence)
current_length += sentence_length
else:
if current_segment:
encoded_segment = tokenizer.encode(
" ".join(current_segment),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
segments.append((current_segment, len(encoded_segment)))
current_segment = [sentence]
current_length = sentence_length
if current_segment:
encoded_segment = tokenizer.encode(
" ".join(current_segment),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
segments.append((current_segment, len(encoded_segment)))
final_segments = []
for i, (seg, length) in enumerate(segments):
if i == len(segments) - 1:
if length < min_last_segment_length and len(final_segments) > 0:
prev_seg, prev_length = final_segments[-1]
combined_encoded = tokenizer.encode(
" ".join(prev_seg + seg),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
if len(combined_encoded) <= max_length + tolerance:
final_segments[-1] = (prev_seg + seg, len(combined_encoded))
else:
final_segments.append((seg, length))
else:
final_segments.append((seg, length))
else:
final_segments.append((seg, length))
decoded_segments = []
encoded_segments = []
for seg, _ in final_segments:
encoded_segment = tokenizer.encode(
" ".join(seg),
add_special_tokens=True,
max_length=max_length + tolerance,
truncation=True,
)
decoded_segment = tokenizer.decode(encoded_segment)
decoded_segments.append(decoded_segment)
return decoded_segments
def predict_quillbot(text):
with torch.no_grad():
quillbot_model.eval()
tokenized_text = quillbot_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=256,
return_tensors="pt",
).to(device)
output = quillbot_model(**tokenized_text)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
q_score = {
"Humanized": output_norm[1].item(),
"Original": output_norm[0].item(),
}
return q_score
def predict_for_explainanility(text, model_type=None):
if model_type == "quillbot":
cleaning = False
max_length = 256
model = humanizer_model_mini
tokenizer = humanizer_tokenizer_mini
elif model_type == "bc":
cleaning = True
max_length = 512
model = bc_model_mini
tokenizer = bc_tokenizer_mini
else:
raise ValueError("Invalid model type")
with torch.no_grad():
if cleaning:
text = [remove_special_characters(t) for t in text]
tokenized_text = tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).to(device_needed)
outputs = model(**tokenized_text)
tensor_logits = outputs[0]
probas = F.softmax(tensor_logits).detach().cpu().numpy()
return probas
def predict_bc(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = text_bc_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=bc_token_size,
return_tensors="pt",
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_mc(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = text_mc_tokenizer(
text,
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=mc_token_size,
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_mc_scores(input):
bc_scores = []
mc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
bc_scores_array = np.array(bc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
samples_len_mc = len(
split_text_allow_complete_sentences_nltk(input, type_det="mc")
)
for i in range(samples_len_mc):
cleaned_text_mc = remove_special_characters(segments_mc[i])
mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
mc_scores.append(mc_score)
mc_scores_array = np.array(mc_scores)
average_mc_scores = np.mean(mc_scores_array, axis=0)
mc_score_list = average_mc_scores.tolist()
mc_score = {}
for score, label in zip(mc_score_list, mc_label_map):
mc_score[label.upper()] = score
sum_prob = 1 - bc_score["HUMAN"]
for key, value in mc_score.items():
mc_score[key] = value * sum_prob
if sum_prob < 0.01:
mc_score = {}
return mc_score
def predict_bc_scores(input):
bc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
bc_scores_array = np.array(bc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
print(
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
)
# isotonic regression calibration
ai_score = iso_reg.predict([bc_score_list[1]])[0]
human_score = 1 - ai_score
bc_score = {"AI": ai_score, "HUMAN": human_score}
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
print(f"Input Text: {cleaned_text_bc}")
return bc_score
def predict_1on1(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = tokenizer(
text,
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=mc_token_size,
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_1on1_combined(input):
predictions = []
for i, model in enumerate(text_1on1_models):
predictions.append(
predict_1on1(models_1on1[model], tokenizers_1on1[model], input)[1]
)
return predictions
def predict_1on1_single(input, model):
predictions = predict_1on1(
models_1on1[model], tokenizers_1on1[model], input
)[1]
return predictions
def predict_mc_scores(input, models):
if len(models) == 0:
return {}
print(f"Models to Test: {models}")
# BC SCORE
bc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
bc_scores_array = np.array(bc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
print(
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
)
# isotonic regression calibration
ai_score = iso_reg.predict([bc_score_list[1]])[0]
human_score = 1 - ai_score
bc_score = {"AI": ai_score, "HUMAN": human_score}
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
# MC SCORE
if len(models) > 1:
print("Starting MC")
mc_scores = []
segments_mc = split_text_allow_complete_sentences_nltk(
input, type_det="mc"
)
samples_len_mc = len(
split_text_allow_complete_sentences_nltk(input, type_det="mc")
)
for i in range(samples_len_mc):
cleaned_text_mc = remove_special_characters(segments_mc[i])
mc_score = predict_mc(
text_mc_model, text_mc_tokenizer, cleaned_text_mc
)
mc_scores.append(mc_score)
mc_scores_array = np.array(mc_scores)
average_mc_scores = np.mean(mc_scores_array, axis=0)
mc_score_list = average_mc_scores.tolist()
mc_score = {}
for score, label in zip(mc_score_list, mc_label_map):
mc_score[label.upper()] = score
mc_score = {
key: mc_score[key.upper()]
for key in models
if key.upper() in mc_score
}
total = sum(mc_score.values())
# Normalize each value by dividing it by the total
mc_score = {key: value / total for key, value in mc_score.items()}
sum_prob = 1 - bc_score["HUMAN"]
for key, value in mc_score.items():
mc_score[key] = value * sum_prob
print("MC Score:", mc_score)
if sum_prob < 0.01:
mc_score = {}
elif len(models) == 1:
print("Starting 1on1")
mc_scores = []
segments_mc = split_text_allow_complete_sentences_nltk(
input, type_det="mc"
)
samples_len_mc = len(
split_text_allow_complete_sentences_nltk(input, type_det="mc")
)
for i in range(samples_len_mc):
cleaned_text_mc = remove_special_characters(segments_mc[i])
mc_score = predict_1on1_single(cleaned_text_mc, models[0])
mc_scores.append(mc_score)
mc_scores_array = np.array(mc_scores)
average_mc_scores = np.mean(mc_scores_array, axis=0)
print(average_mc_scores)
mc_score_list = average_mc_scores.tolist()
mc_score = {}
mc_score[models[0].upper()] = mc_score_list
mc_score["OTHER"] = 1 - mc_score_list
sum_prob = 1 - bc_score["HUMAN"]
for key, value in mc_score.items():
mc_score[key] = value * sum_prob
if sum_prob < 0.01:
mc_score = {}
return mc_score
|