aliasgerovs commited on
Commit
eb8fa16
·
1 Parent(s): 1c49ee1
Files changed (2) hide show
  1. app.py +4 -4
  2. predictors.py +1 -38
app.py CHANGED
@@ -1,7 +1,7 @@
1
  import gradio as gr
2
  import numpy as np
3
  from datetime import date
4
- from predictors import predict_bc_scores, predict_mc_scores, predict_1on1_scores
5
  from analysis import depth_analysis
6
  from predictors import predict_quillbot
7
  from plagiarism import plagiarism_check, build_date
@@ -27,7 +27,7 @@ def ai_generated_test(option, input, models):
27
  if option == "Human vs AI":
28
  return predict_bc_scores(input), None
29
  elif option == "Human vs AI Source Models":
30
- return predict_bc_scores(input), predict_1on1_scores(input, models)
31
  return None, None
32
 
33
 
@@ -59,7 +59,7 @@ def main(
59
  )
60
  depth_analysis_plot = depth_analysis(input)
61
  bc_score = predict_bc_scores(input)
62
- mc_score = predict_1on1_scores(input, models)
63
  quilscore = predict_quillbot(input)
64
 
65
  return (
@@ -73,7 +73,7 @@ def main(
73
 
74
  # START OF GRADIO
75
 
76
- title = "Copyright Checker"
77
  months = {
78
  "January": "01",
79
  "February": "02",
 
1
  import gradio as gr
2
  import numpy as np
3
  from datetime import date
4
+ from predictors import predict_bc_scores, predict_mc_scores
5
  from analysis import depth_analysis
6
  from predictors import predict_quillbot
7
  from plagiarism import plagiarism_check, build_date
 
27
  if option == "Human vs AI":
28
  return predict_bc_scores(input), None
29
  elif option == "Human vs AI Source Models":
30
+ return predict_bc_scores(input), predict_mc_scores(input, models)
31
  return None, None
32
 
33
 
 
59
  )
60
  depth_analysis_plot = depth_analysis(input)
61
  bc_score = predict_bc_scores(input)
62
+ mc_score = predict_mc_scores(input, models)
63
  quilscore = predict_quillbot(input)
64
 
65
  return (
 
73
 
74
  # START OF GRADIO
75
 
76
+ title = "AI Detection and Source Analysis"
77
  months = {
78
  "January": "01",
79
  "February": "02",
predictors.py CHANGED
@@ -227,43 +227,6 @@ def predict_mc(model, tokenizer, text):
227
  output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
228
  return output_norm
229
 
230
-
231
- def predict_mc_scores(input):
232
- bc_scores = []
233
- mc_scores = []
234
-
235
- samples_len_bc = len(split_text_allow_complete_sentences_nltk(input, type_det="bc"))
236
- segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
237
- for i in range(samples_len_bc):
238
- cleaned_text_bc = remove_special_characters(segments_bc[i])
239
- bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
240
- bc_scores.append(bc_score)
241
- bc_scores_array = np.array(bc_scores)
242
- average_bc_scores = np.mean(bc_scores_array, axis=0)
243
- bc_score_list = average_bc_scores.tolist()
244
- bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
245
- segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
246
- samples_len_mc = len(split_text_allow_complete_sentences_nltk(input, type_det="mc"))
247
- for i in range(samples_len_mc):
248
- cleaned_text_mc = remove_special_characters(segments_mc[i])
249
- mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
250
- mc_scores.append(mc_score)
251
- mc_scores_array = np.array(mc_scores)
252
- average_mc_scores = np.mean(mc_scores_array, axis=0)
253
- mc_score_list = average_mc_scores.tolist()
254
- mc_score = {}
255
- for score, label in zip(mc_score_list, mc_label_map):
256
- mc_score[label.upper()] = score
257
-
258
- sum_prob = 1 - bc_score["HUMAN"]
259
- for key, value in mc_score.items():
260
- mc_score[key] = value * sum_prob
261
- if sum_prob < 0.01:
262
- mc_score = {}
263
-
264
- return mc_score
265
-
266
-
267
  def predict_bc_scores(input):
268
  bc_scores = []
269
  samples_len_bc = len(split_text_allow_complete_sentences_nltk(input, type_det="bc"))
@@ -313,7 +276,7 @@ def predict_1on1_single(input, model):
313
  return predictions
314
 
315
 
316
- def predict_1on1_scores(input, models):
317
 
318
  if len(models) == 0:
319
  return {}
 
227
  output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
228
  return output_norm
229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230
  def predict_bc_scores(input):
231
  bc_scores = []
232
  samples_len_bc = len(split_text_allow_complete_sentences_nltk(input, type_det="bc"))
 
276
  return predictions
277
 
278
 
279
+ def predict_mc_scores(input, models):
280
 
281
  if len(models) == 0:
282
  return {}