Spaces:
Running
Running
File size: 31,525 Bytes
7b55067 4cfdb9d 2ddcb89 2913f49 7b55067 66111ac 7b55067 09e6287 3a8e960 7b55067 9288be8 7b55067 4cfdb9d 24aff0c 7b55067 2913f49 7b55067 b413b48 7b55067 7015859 7b55067 09e6287 7b55067 09e6287 7b55067 4cfdb9d 4068829 4cfdb9d 09e6287 4cfdb9d 4068829 4cfdb9d 09e6287 4cfdb9d 2913f49 4cfdb9d 09e6287 4cfdb9d 09e6287 4cfdb9d 24aff0c 2913f49 7b55067 f1d6ab9 7b55067 2913f49 291574f 4cfdb9d 7b55067 4cfdb9d 09e6287 24aff0c f1d6ab9 09e6287 f1d6ab9 24aff0c 09e6287 24aff0c 09e6287 24aff0c 13694c6 09e6287 24aff0c 2913f49 704151f 2913f49 704151f 13694c6 2913f49 14c5146 24aff0c 3c85ea8 4cfdb9d 09e6287 4cfdb9d 3c85ea8 4cfdb9d 302324f 09e6287 f1d6ab9 c6b94ed 302324f 09e6287 302324f f1d6ab9 4068829 302324f 4cfdb9d 7b55067 09e6287 a1f9248 7b55067 3a8e960 09e6287 7b55067 09e6287 7b55067 09e6287 7b55067 09e6287 7b55067 09e6287 7b55067 09e6287 7b55067 09e6287 7b55067 9f7dd1f 7b55067 9f7dd1f 7b55067 09e6287 7b55067 66111ac 8dc0c9a 66111ac 7b55067 9f7dd1f 7b55067 09e6287 7b55067 09e6287 7b55067 d5343ee 1f18d28 09e6287 1f18d28 09e6287 1f18d28 09e6287 1f18d28 7b55067 9f7dd1f 7b55067 9f7dd1f 7b55067 4068829 7b55067 4068829 7b55067 66111ac 9f7dd1f 66111ac 7b55067 09e6287 7b55067 9f7dd1f 7b55067 09e6287 7b55067 09e6287 7b55067 09e6287 7b55067 09e6287 fd6bb51 82b97bd 09e6287 82b97bd 09e6287 82b97bd 7b55067 82b97bd 09e6287 82b97bd 7b55067 ca75c69 2913f49 ca75c69 89d1821 92f9443 89d1821 36ebc7b faa6271 6b4ee7d e0a861f 858a793 e0a861f 9b49b5b e0a861f 9b49b5b 858a793 e0a861f 858a793 2f0da4f 858a793 2f0da4f 858a793 9b49b5b 858a793 9b49b5b 858a793 9b49b5b 858a793 9b49b5b 858a793 9b49b5b 858a793 9b49b5b 858a793 89d1821 36a7b5d 82b97bd 09e6287 82b97bd a1f9248 82b97bd 09e6287 82b97bd 09e6287 82b97bd a1f9248 3a8e960 b4a2f4a 885e4ad b4a2f4a 885e4ad b4a2f4a 885e4ad b4a2f4a 885e4ad b4a2f4a a678469 82b97bd 7b55067 82b97bd 09e6287 3d7a954 8dcf13c 3d7a954 f52f788 82b97bd ee5283f 82b97bd 66111ac 82b97bd 9ae1da2 82b97bd fbb8761 82b97bd faa6271 4cfdb9d 36a7b5d 4cfdb9d 82b97bd 09e6287 82b97bd 3d7a954 09e6287 24aff0c 09e6287 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 |
# Standard library imports
import datetime
import base64
import os
# Related third-party imports
import streamlit as st
from google_auth_oauthlib.flow import Flow
from googleapiclient.discovery import build
from dotenv import load_dotenv
import pandas as pd
import searchconsole
import cohere
from sklearn.metrics.pairwise import cosine_similarity
import requests
from bs4 import BeautifulSoup
from apify_client import ApifyClient
import urllib.parse
import openai
from openai import OpenAI
import re
load_dotenv()
# Initialize Cohere client
APIFY_API_TOKEN = os.environ.get('APIFY_API_TOKEN')
COHERE_API_KEY = os.environ["COHERE_API_KEY"]
co = cohere.Client(COHERE_API_KEY)
if not APIFY_API_TOKEN:
st.error("APIFY_API_TOKEN is not set in the environment variables. Please set it and restart the application.")
# Initialize the ApifyClient with the API token
client = ApifyClient(APIFY_API_TOKEN)
# Initialize the ApifyClient with the API token
# Initialize OpenAI client
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
if not OPENAI_API_KEY:
st.error("OPENAI_API_KEY is not set in the environment variables. Please set it and restart the application.")
client = OpenAI(api_key=OPENAI_API_KEY)
# Configuration: Set to True if running locally, False if running on Streamlit Cloud
IS_LOCAL = False
# Constants
SEARCH_TYPES = ["web", "image", "video", "news", "discover", "googleNews"]
DATE_RANGE_OPTIONS = [
"Last 7 Days",
"Last 30 Days",
"Last 3 Months",
"Last 6 Months",
"Last 12 Months",
"Last 16 Months",
"Custom Range"
]
DEVICE_OPTIONS = ["All Devices", "desktop", "mobile", "tablet"]
BASE_DIMENSIONS = ["page", "query", "country", "date"]
MAX_ROWS = 250_000
DF_PREVIEW_ROWS = 100
# -------------
# Streamlit App Configuration
# -------------
def setup_streamlit():
st.set_page_config(page_title="Keyword Relevance Test", layout="wide")
st.title("Keyword Relevance Test Using Vector Embedding")
st.divider()
#logging.info("Streamlit app configured")
def init_session_state():
if 'selected_property' not in st.session_state:
st.session_state.selected_property = None
if 'selected_search_type' not in st.session_state:
st.session_state.selected_search_type = 'web'
if 'selected_date_range' not in st.session_state:
st.session_state.selected_date_range = 'Last 7 Days'
if 'start_date' not in st.session_state:
st.session_state.start_date = datetime.date.today() - datetime.timedelta(days=7)
if 'end_date' not in st.session_state:
st.session_state.end_date = datetime.date.today()
if 'selected_dimensions' not in st.session_state:
st.session_state.selected_dimensions = ['page', 'query']
if 'selected_device' not in st.session_state:
st.session_state.selected_device = 'All Devices'
if 'custom_start_date' not in st.session_state:
st.session_state.custom_start_date = datetime.date.today() - datetime.timedelta(days=7)
if 'custom_end_date' not in st.session_state:
st.session_state.custom_end_date = datetime.date.today()
#logging.info("Session state initialized")
# -------------
# Data Processing Functions
# -------------
def generate_embeddings(text_list, model_type):
#logging.debug(f"Generating embeddings for model type: {model_type}")
if not text_list:
logging.warning("Text list is empty, returning empty embeddings")
return []
model = 'embed-english-v3.0' if model_type == 'english' else 'embed-multilingual-v3.0'
input_type = 'search_document'
response = co.embed(model=model, texts=text_list, input_type=input_type)
embeddings = response.embeddings
# logging.debug(f"Embeddings generated successfully for model type: {model_type}")
return embeddings
def get_serp_results(query):
if not APIFY_API_TOKEN:
st.error("Apify API token is not set. Unable to fetch SERP results.")
return []
run_input = {
"queries": query,
"resultsPerPage": 5,
"maxPagesPerQuery": 1,
"languageCode": "",
"mobileResults": False,
"includeUnfilteredResults": False,
"saveHtml": False,
"saveHtmlToKeyValueStore": False,
"includeIcons": False,
}
try:
#logger.debug(f"Calling Apify Actor with input: {run_input}")
# Run the Actor and wait for it to finish
run = client.actor("nFJndFXA5zjCTuudP").call(run_input=run_input)
# logger.info(f"Apify Actor run completed. Run ID: {run.get('id')}")
# Fetch results from the run's dataset
#logger.debug(f"Fetching results from dataset ID: {run.get('defaultDatasetId')}")
results = list(client.dataset(run["defaultDatasetId"]).iterate_items())
# logger.info(f"Fetched {len(results)} results from Apify dataset")
if results and 'organicResults' in results[0]:
serp_data = []
for item in results[0]['organicResults'][:5]: # Limit to top 5 results
url = item['url']
content = fetch_content(url, query)
serp_data.append({'url': url, 'content': content})
return serp_data
else:
# logger.warning("No organic results found in the SERP data.")
st.warning("No organic results found in the SERP data.")
return []
except Exception as e:
# logger.exception(f"Error fetching SERP results: {str(e)}")
st.error(f"Error fetching SERP results: {str(e)}")
return []
def extract_relevant_content(full_content, query):
try:
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a helpful assistant that extracts the most relevant content from web pages."},
{"role": "user", "content": f"Given the following web page content and search query, extract only the most relevant parts of the content that answer or relate to the query.If there's no relevant content, say 'No relevant content found.'\n\nQuery: {query}\n\nContent: {full_content[:4000]}"} # Limit input to 4000 characters
],
max_tokens=3000 # Adjust as needed
)
return response.choices[0].message.content.strip()
except Exception as e:
st.error(f"Error in GPT content extraction: {str(e)}")
return "Error in content extraction"
def fetch_content(url, query):
try:
decoded_url = urllib.parse.unquote(url)
response = requests.get(decoded_url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Remove unwanted elements
for unwanted in soup(['nav', 'header', 'footer', 'sidebar', 'menu', 'aside']):
unwanted.decompose()
# Try to find the main content
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_=re.compile('content|main|body'))
if main_content:
content = main_content.get_text(separator=' ', strip=True)
else:
# Fallback to body if no main content is found
content = soup.body.get_text(separator=' ', strip=True)
# Clean up the content
content = re.sub(r'\s+', ' ', content) # Replace multiple spaces with single space
# Use GPT to extract relevant content
relevant_content = extract_relevant_content(content, query)
return relevant_content
except requests.RequestException:
return ""
def calculate_relevance_score(page_content, query, co):
# logger.info(f"Calculating relevance score for query: {query}")
try:
if not page_content:
# logger.warning("Empty page content. Returning score 0.")
return 0
page_embedding = co.embed(texts=[page_content], model='embed-english-v3.0', input_type='search_document').embeddings[0]
query_embedding = co.embed(texts=[query], model='embed-english-v3.0', input_type='search_query').embeddings[0]
score = cosine_similarity([query_embedding], [page_embedding])[0][0]
# logger.debug(f"Relevance score calculated: {score}")
return score
except Exception as e:
# logger.exception(f"Error calculating relevance score: {str(e)}")
st.error(f"Error calculating relevance score: {str(e)}")
return 0
def analyze_competitors(row, co, custom_url=None):
# logger.info(f"Analyzing competitors for query: {row['query']}")
query = row['query']
our_url = row['page']
competitor_data = get_serp_results(query)
if custom_url and custom_url not in [data['url'] for data in competitor_data]:
custom_content = fetch_content(custom_url, query)
competitor_data.append({'url': custom_url, 'content': custom_content})
results = []
for data in competitor_data:
score = calculate_relevance_score(data['content'], query, co)
results.append({'url': data['url'], 'relevancy_score': score})
our_content = fetch_content(our_url, query)
our_score = calculate_relevance_score(our_content, query, co)
results.append({'url': our_url, 'relevancy_score': our_score})
results_df = pd.DataFrame(results).sort_values('relevancy_score', ascending=False)
return results_df
def show_competitor_analysis(row, co):
if st.button("Check Competitors", key=f"comp_{row['page']}"):
# logger.info(f"Competitor analysis requested for page: {row['page']}")
with st.spinner('Analyzing competitors...'):
results_df = analyze_competitors(row, co)
st.write("Relevancy Score Comparison:")
st.dataframe(results_df)
our_data = results_df[results_df['url'] == row['page']]
if our_data.empty:
st.error(f"Our page '{row['page']}' is not in the results. This indicates an error in fetching or processing the page.")
# logger.error(f"Our page '{row['page']}' is missing from the results.")
# Additional debugging information
# st.write("Debugging Information:")
# st.json({
# "our_url": row['page'],
# "query": row['query'],
# "content_fetched": fetch_content(row['page']),
# "urls_processed": results_df['url'].tolist()
# })
else:
our_rank = our_data.index[0] + 1
total_results = len(results_df)
our_score = our_data['relevancy_score'].values[0]
# logger.info(f"Our page ranks {our_rank} out of {total_results} in terms of relevancy score.")
st.write(f"Our page ('{row['page']}') ranks {our_rank} out of {total_results} in terms of relevancy score.")
st.write(f"Our relevancy score: {our_score:.4f}")
if our_score == 0:
st.warning("Our page's relevancy score is 0. This might indicate an issue with content fetching or score calculation.")
# Additional debugging information
# st.write("Debugging Information:")
# content = fetch_content(row['page'])
# st.json({
# "content_length": len(content),
# "content_preview": content[:500] if content else "No content fetched",
# "query": row['query']
# })
elif our_rank == 1:
st.success("Your page has the highest relevancy score!")
elif our_rank <= 3:
st.info("Your page is among the top 3 most relevant results.")
elif our_rank > total_results / 2:
st.warning("Your page's relevancy score is in the lower half of the results. Consider optimizing your content.")
def process_gsc_data(df):
#logging.info("Processing GSC data")
df_sorted = df.sort_values(['impressions'], ascending=[False])
df_unique = df_sorted.drop_duplicates(subset='page', keep='first')
if 'relevancy_score' not in df_unique.columns:
df_unique['relevancy_score'] = 0
else:
df_unique['relevancy_score'] = df_sorted.groupby('page')['relevancy_score'].first().values
result = df_unique[['page', 'query', 'clicks', 'impressions', 'ctr', 'position', 'relevancy_score']]
#logging.info("GSC data processed successfully")
return result
# -------------
# Google Authentication Functions
# -------------
def load_config():
#logging.info("Loading Google client configuration")
client_config = {
"web": {
"client_id": os.environ["CLIENT_ID"],
"client_secret": os.environ["CLIENT_SECRET"],
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"redirect_uris": ["https://poemsforaphrodite-gscpro.hf.space/"],
}
}
#logging.info("Google client configuration loaded")
return client_config
def init_oauth_flow(client_config):
#logging.info("Initializing OAuth flow")
scopes = ["https://www.googleapis.com/auth/webmasters.readonly"]
flow = Flow.from_client_config(
client_config,
scopes=scopes,
redirect_uri=client_config["web"]["redirect_uris"][0]
)
#logging.info("OAuth flow initialized")
return flow
def google_auth(client_config):
# logging.info("Starting Google authentication")
flow = init_oauth_flow(client_config)
auth_url, _ = flow.authorization_url(prompt="consent")
#logging.info("Google authentication URL generated")
return flow, auth_url
def auth_search_console(client_config, credentials):
#logging.info("Authenticating with Google Search Console")
token = {
"token": credentials.token,
"refresh_token": credentials.refresh_token,
"token_uri": credentials.token_uri,
"client_id": credentials.client_id,
"client_secret": credentials.client_secret,
"scopes": credentials.scopes,
"id_token": getattr(credentials, "id_token", None),
}
#logging.info("Google Search Console authenticated")
return searchconsole.authenticate(client_config=client_config, credentials=token)
# -------------
# Data Fetching Functions
# -------------
def list_gsc_properties(credentials):
# logging.info("Listing GSC properties")
service = build('webmasters', 'v3', credentials=credentials)
site_list = service.sites().list().execute()
properties = [site['siteUrl'] for site in site_list.get('siteEntry', [])] or ["No properties found"]
#logging.info(f"GSC properties listed: {properties}")
return properties
def fetch_gsc_data(webproperty, search_type, start_date, end_date, dimensions, device_type=None):
#logging.info(f"Fetching GSC data for property: {webproperty}, search_type: {search_type}, date_range: {start_date} to {end_date}, dimensions: {dimensions}, device_type: {device_type}")
query = webproperty.query.range(start_date, end_date).search_type(search_type).dimension(*dimensions)
if 'device' in dimensions and device_type and device_type != 'All Devices':
query = query.filter('device', 'equals', device_type.lower())
try:
df = query.limit(MAX_ROWS).get().to_dataframe()
#logging.info("GSC data fetched successfully")
return process_gsc_data(df)
except Exception as e:
#logging.error(f"Error fetching GSC data: {e}")
show_error(e)
return pd.DataFrame()
def calculate_relevancy_scores(df, model_type):
#logging.info("Calculating relevancy scores")
with st.spinner('Calculating relevancy scores...'):
try:
page_contents = [fetch_content(url) for url in df['page']]
page_embeddings = generate_embeddings(page_contents, model_type)
query_embeddings = generate_embeddings(df['query'].tolist(), model_type)
relevancy_scores = cosine_similarity(query_embeddings, page_embeddings).diagonal()
df = df.assign(relevancy_score=relevancy_scores)
#logging.info("Relevancy scores calculated successfully")
except Exception as e:
#logging.error(f"Error calculating relevancy scores: {e}")
st.warning(f"Error calculating relevancy scores: {e}")
df = df.assign(relevancy_score=0)
return df
# -------------
# Utility Functions
# -------------
def update_dimensions(selected_search_type):
# logging.debug(f"Updating dimensions for search type: {selected_search_type}")
return BASE_DIMENSIONS + ['device'] if selected_search_type in SEARCH_TYPES else BASE_DIMENSIONS
def calc_date_range(selection, custom_start=None, custom_end=None):
# logging.debug(f"Calculating date range for selection: {selection}")
range_map = {
'Last 7 Days': 7,
'Last 30 Days': 30,
'Last 3 Months': 90,
'Last 6 Months': 180,
'Last 12 Months': 365,
'Last 16 Months': 480
}
today = datetime.date.today()
if selection == 'Custom Range':
if custom_start and custom_end:
#logging.debug(f"Custom date range: {custom_start} to {custom_end}")
return custom_start, custom_end
else:
#logging.debug("Defaulting custom date range to last 7 days")
return today - datetime.timedelta(days=7), today
date_range = today - datetime.timedelta(days=range_map.get(selection, 0)), today
#logging.debug(f"Date range calculated: {date_range}")
return date_range
def show_error(e):
#logging.error(f"An error occurred: {e}")
st.error(f"An error occurred: {e}")
def property_change():
#logging.info(f"Property changed to: {st.session_state['selected_property_selector']}")
st.session_state.selected_property = st.session_state['selected_property_selector']
# -------------
# File & Download Operations
# -------------
def show_dataframe(report):
#logging.info("Showing dataframe preview")
with st.expander("Preview the First 100 Rows (Unique Pages with Top Query)"):
st.dataframe(report.head(DF_PREVIEW_ROWS))
def download_csv_link(report):
#logging.info("Generating CSV download link")
def to_csv(df):
return df.to_csv(index=False, encoding='utf-8-sig')
csv = to_csv(report)
b64_csv = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64_csv}" download="search_console_data.csv">Download CSV File</a>'
st.markdown(href, unsafe_allow_html=True)
#logging.info("CSV download link generated")
# -------------
# Streamlit UI Components
# -------------
def show_google_sign_in(auth_url):
# logging.info("Showing Google sign-in button")
with st.sidebar:
if st.button("Sign in with Google"):
st.write('Please click the link below to sign in:')
st.markdown(f'[Google Sign-In]({auth_url})', unsafe_allow_html=True)
def show_property_selector(properties, account):
# logging.info("Showing property selector")
selected_property = st.selectbox(
"Select a Search Console Property:",
properties,
index=properties.index(
st.session_state.selected_property) if st.session_state.selected_property in properties else 0,
key='selected_property_selector',
on_change=property_change
)
return account[selected_property]
def show_search_type_selector():
# logging.info("Showing search type selector")
return st.selectbox(
"Select Search Type:",
SEARCH_TYPES,
index=SEARCH_TYPES.index(st.session_state.selected_search_type),
key='search_type_selector'
)
def show_model_type_selector():
# logging.info("Showing model type selector")
return st.selectbox(
"Select the embedding model:",
["english", "multilingual"],
key='model_type_selector'
)
def calculate_single_relevancy(row):
page_content = fetch_content(row['page'], row['query'])
query = row['query']
score = calculate_relevance_score(page_content, query, co)
return score
def show_tabular_data(df, co):
st.write("Data Table with Relevancy Scores")
# Pagination
rows_per_page = 10
total_rows = len(df)
total_pages = (total_rows - 1) // rows_per_page + 1
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
# Pagination controls
col1, col2, col3 = st.columns([1,3,1])
with col1:
if st.button("< Prev", disabled=st.session_state.current_page == 1):
st.session_state.current_page -= 1
with col2:
st.write(f"Page {st.session_state.current_page} of {total_pages}")
with col3:
if st.button("Next >", disabled=st.session_state.current_page == total_pages):
st.session_state.current_page += 1
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = start_idx + rows_per_page
# Initialize or update selected_rows in session state
if 'selected_rows' not in st.session_state or len(st.session_state.selected_rows) != len(df):
st.session_state.selected_rows = [False] * len(df)
# Add a "Calculate Relevancy" button at the top
if st.button("Calculate Relevancy for Selected"):
selected_indices = [i for i, selected in enumerate(st.session_state.selected_rows) if selected]
with st.spinner('Calculating relevancy scores...'):
for index in selected_indices:
if pd.isna(df.iloc[index]['relevancy_score']) or df.iloc[index]['relevancy_score'] == 0:
df.iloc[index, df.columns.get_loc('relevancy_score')] = calculate_single_relevancy(df.iloc[index])
st.success(f"Calculated relevancy scores for {len(selected_indices)} selected rows.")
st.experimental_rerun()
# Display column headers
cols = st.columns([0.5, 3, 2, 1, 1, 1, 1, 1, 1])
headers = ['Select', 'Page', 'Query', 'Clicks', 'Impressions', 'CTR', 'Position', 'Relevancy Score', 'Competitors']
for col, header in zip(cols, headers):
col.write(f"**{header}**")
# Display each row
for i, row in enumerate(df.iloc[start_idx:end_idx].itertuples(), start=start_idx):
cols = st.columns([0.5, 3, 2, 1, 1, 1, 1, 1, 1])
# Checkbox for row selection
cols[0].checkbox("", key=f"select_{i}", value=st.session_state.selected_rows[i],
on_change=lambda idx=i: setattr(st.session_state, 'selected_rows',
[True if j == idx else x for j, x in enumerate(st.session_state.selected_rows)]))
# Truncate and make the URL clickable
truncated_url = row.page[:30] + '...' if len(row.page) > 30 else row.page
cols[1].markdown(f"[{truncated_url}]({row.page})")
cols[2].write(row.query)
cols[3].write(row.clicks)
cols[4].write(row.impressions)
cols[5].write(f"{row.ctr:.2%}")
cols[6].write(f"{row.position:.1f}")
cols[7].write(f"{row.relevancy_score:.4f}" if not pd.isna(row.relevancy_score) and row.relevancy_score != 0 else "N/A")
# Competitors column
competitor_button = cols[8].button("Show", key=f"comp_{i}", disabled=pd.isna(row.relevancy_score) or row.relevancy_score == 0)
if competitor_button:
st.write(f"Competitor Analysis for: {row.query}")
with st.spinner('Analyzing competitors...'):
results_df = analyze_competitors(row._asdict(), co)
# Sort the results by relevancy score in descending order
results_df = results_df.sort_values('relevancy_score', ascending=False).reset_index(drop=True)
# Find our page's rank
our_rank = results_df.index[results_df['url'] == row.page].tolist()
if our_rank:
our_rank = our_rank[0] + 1 # Adding 1 because index starts at 0
total_results = len(results_df)
our_score = results_df.loc[results_df['url'] == row.page, 'relevancy_score'].values[0]
st.dataframe(results_df)
st.write(f"Our page ranks {our_rank} out of {total_results} in terms of relevancy score.")
st.write(f"Our relevancy score: {our_score:.4f}")
if our_rank == 1:
st.success("Your page has the highest relevancy score!")
elif our_rank <= 3:
st.info("Your page is among the top 3 most relevant results.")
elif our_rank > total_results / 2:
st.warning("Your page's relevancy score is in the lower half of the results. Consider optimizing your content.")
else:
st.error(f"Our page '{row.page}' is not in the results. This indicates an error in fetching or processing the page.")
return df # Return the updated dataframe
def show_date_range_selector():
# logging.info("Showing date range selector")
return st.selectbox(
"Select Date Range:",
DATE_RANGE_OPTIONS,
index=DATE_RANGE_OPTIONS.index(st.session_state.selected_date_range),
key='date_range_selector'
)
def show_custom_date_inputs():
# logging.info("Showing custom date inputs")
st.session_state.custom_start_date = st.date_input("Start Date", st.session_state.custom_start_date)
st.session_state.custom_end_date = st.date_input("End Date", st.session_state.custom_end_date)
def show_dimensions_selector(search_type):
# logging.info("Showing dimensions selector")
available_dimensions = update_dimensions(search_type)
return st.multiselect(
"Select Dimensions:",
available_dimensions,
default=st.session_state.selected_dimensions,
key='dimensions_selector'
)
def show_paginated_dataframe(report, rows_per_page=20):
# logging.info("Showing paginated dataframe")
report['position'] = report['position'].astype(int)
report['impressions'] = pd.to_numeric(report['impressions'], errors='coerce')
def format_ctr(x):
try:
return f"{float(x):.2%}"
except ValueError:
return x
def format_relevancy_score(x):
try:
return f"{float(x):.2f}"
except ValueError:
return x
report['ctr'] = report['ctr'].apply(format_ctr)
report['relevancy_score'] = report['relevancy_score'].apply(format_relevancy_score)
def make_clickable(url):
return f'<a href="{url}" target="_blank">{url}</a>'
report['clickable_url'] = report['page'].apply(make_clickable)
columns = ['clickable_url', 'query', 'impressions', 'clicks', 'ctr', 'position', 'relevancy_score']
report = report[columns]
sort_column = st.selectbox("Sort by:", columns[1:], index=columns[1:].index('impressions'))
sort_order = st.radio("Sort order:", ("Descending", "Ascending"))
ascending = sort_order == "Ascending"
def safe_float_convert(x):
try:
return float(x.rstrip('%')) / 100 if isinstance(x, str) and x.endswith('%') else float(x)
except ValueError:
return 0
report['ctr_numeric'] = report['ctr'].apply(safe_float_convert)
report['relevancy_score_numeric'] = report['relevancy_score'].apply(safe_float_convert)
sort_column_numeric = sort_column + '_numeric' if sort_column in ['ctr', 'relevancy_score'] else sort_column
report = report.sort_values(by=sort_column_numeric, ascending=ascending)
report = report.drop(columns=['ctr_numeric', 'relevancy_score_numeric'])
total_rows = len(report)
total_pages = (total_rows - 1) // rows_per_page + 1
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
col1, col2, col3 = st.columns([1,3,1])
with col1:
if st.button("Previous", disabled=st.session_state.current_page == 1):
st.session_state.current_page -= 1
with col2:
st.write(f"Page {st.session_state.current_page} of {total_pages}")
with col3:
if st.button("Next", disabled=st.session_state.current_page == total_pages):
st.session_state.current_page += 1
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = start_idx + rows_per_page
st.markdown(report.iloc[start_idx:end_idx].to_html(escape=False, index=False), unsafe_allow_html=True)
# -------------
# Main Streamlit App Function
# -------------
def main():
# logging.info("Starting main function")
setup_streamlit()
print("hello")
client_config = load_config()
if 'auth_flow' not in st.session_state or 'auth_url' not in st.session_state:
st.session_state.auth_flow, st.session_state.auth_url = google_auth(client_config)
query_params = st.query_params
auth_code = query_params.get("code", None)
if auth_code and 'credentials' not in st.session_state:
st.session_state.auth_flow.fetch_token(code=auth_code)
st.session_state.credentials = st.session_state.auth_flow.credentials
if 'credentials' not in st.session_state:
show_google_sign_in(st.session_state.auth_url)
else:
init_session_state()
account = auth_search_console(client_config, st.session_state.credentials)
properties = list_gsc_properties(st.session_state.credentials)
if properties:
webproperty = show_property_selector(properties, account)
search_type = show_search_type_selector()
date_range_selection = show_date_range_selector()
model_type = show_model_type_selector()
if date_range_selection == 'Custom Range':
show_custom_date_inputs()
start_date, end_date = st.session_state.custom_start_date, st.session_state.custom_end_date
else:
start_date, end_date = calc_date_range(date_range_selection)
selected_dimensions = show_dimensions_selector(search_type)
if 'report_data' not in st.session_state:
st.session_state.report_data = None
if st.button("Fetch Data"):
with st.spinner('Fetching data...'):
st.session_state.report_data = fetch_gsc_data(webproperty, search_type, start_date, end_date, selected_dimensions)
if st.session_state.report_data is not None and not st.session_state.report_data.empty:
st.write("Data fetched successfully.")
st.session_state.report_data = show_tabular_data(st.session_state.report_data, co)
download_csv_link(st.session_state.report_data)
elif st.session_state.report_data is not None:
# logger.warning("No data found for the selected criteria.")
st.warning("No data found for the selected criteria.")
if __name__ == "__main__":
# logging.info("Running main function")
main()
#logger.info("Script completed") |