Spaces:
Sleeping
Sleeping
poemsforaphrodite
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -171,25 +171,21 @@ def analyze_competitors(row, co):
|
|
171 |
logger.info(f"Analyzing competitors for query: {row['query']}")
|
172 |
query = row['query']
|
173 |
our_url = row['page']
|
174 |
-
our_score = row['relevancy_score']
|
175 |
|
176 |
competitor_urls = get_serp_results(query)
|
177 |
|
178 |
results = []
|
179 |
-
for url in competitor_urls:
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
results.append({'url': url, 'relevancy_score': score})
|
184 |
-
|
185 |
-
# Add our page's data
|
186 |
-
results.append({'url': our_url, 'relevancy_score': our_score})
|
187 |
|
188 |
results_df = pd.DataFrame(results).sort_values('relevancy_score', ascending=False)
|
189 |
|
190 |
logger.info(f"Competitor analysis completed. {len(results)} results obtained.")
|
191 |
return results_df
|
192 |
|
|
|
193 |
def show_competitor_analysis(row, co):
|
194 |
if st.button("Check Competitors", key=f"comp_{row['page']}"):
|
195 |
logger.info(f"Competitor analysis requested for page: {row['page']}")
|
@@ -200,8 +196,11 @@ def show_competitor_analysis(row, co):
|
|
200 |
|
201 |
our_rank = results_df.index[results_df['url'] == row['page']].tolist()[0] + 1
|
202 |
total_results = len(results_df)
|
|
|
|
|
203 |
logger.info(f"Our page ranks {our_rank} out of {total_results} in terms of relevancy score.")
|
204 |
-
st.write(f"Our page ranks {our_rank} out of {total_results} in terms of relevancy score.")
|
|
|
205 |
|
206 |
if our_rank == 1:
|
207 |
st.success("Your page has the highest relevancy score!")
|
@@ -318,6 +317,19 @@ def fetch_gsc_data(webproperty, search_type, start_date, end_date, dimensions, d
|
|
318 |
show_error(e)
|
319 |
return pd.DataFrame()
|
320 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
def calculate_relevancy_scores(df, model_type):
|
322 |
logging.info("Calculating relevancy scores")
|
323 |
with st.spinner('Calculating relevancy scores...'):
|
|
|
171 |
logger.info(f"Analyzing competitors for query: {row['query']}")
|
172 |
query = row['query']
|
173 |
our_url = row['page']
|
|
|
174 |
|
175 |
competitor_urls = get_serp_results(query)
|
176 |
|
177 |
results = []
|
178 |
+
for url in [our_url] + competitor_urls: # Include our URL at the beginning
|
179 |
+
content = fetch_content(url)
|
180 |
+
score = calculate_relevance_score(content, query, co)
|
181 |
+
results.append({'url': url, 'relevancy_score': score})
|
|
|
|
|
|
|
|
|
182 |
|
183 |
results_df = pd.DataFrame(results).sort_values('relevancy_score', ascending=False)
|
184 |
|
185 |
logger.info(f"Competitor analysis completed. {len(results)} results obtained.")
|
186 |
return results_df
|
187 |
|
188 |
+
|
189 |
def show_competitor_analysis(row, co):
|
190 |
if st.button("Check Competitors", key=f"comp_{row['page']}"):
|
191 |
logger.info(f"Competitor analysis requested for page: {row['page']}")
|
|
|
196 |
|
197 |
our_rank = results_df.index[results_df['url'] == row['page']].tolist()[0] + 1
|
198 |
total_results = len(results_df)
|
199 |
+
our_score = results_df.loc[results_df['url'] == row['page'], 'relevancy_score'].values[0]
|
200 |
+
|
201 |
logger.info(f"Our page ranks {our_rank} out of {total_results} in terms of relevancy score.")
|
202 |
+
st.write(f"Our page ('{row['page']}') ranks {our_rank} out of {total_results} in terms of relevancy score.")
|
203 |
+
st.write(f"Our relevancy score: {our_score:.4f}")
|
204 |
|
205 |
if our_rank == 1:
|
206 |
st.success("Your page has the highest relevancy score!")
|
|
|
317 |
show_error(e)
|
318 |
return pd.DataFrame()
|
319 |
|
320 |
+
def calculate_relevance_score(page_content, query, co):
|
321 |
+
logger.info(f"Calculating relevance score for query: {query}")
|
322 |
+
try:
|
323 |
+
page_embedding = co.embed(texts=[page_content], model='embed-english-v3.0', input_type='search_document').embeddings[0]
|
324 |
+
query_embedding = co.embed(texts=[query], model='embed-english-v3.0', input_type='search_query').embeddings[0]
|
325 |
+
score = cosine_similarity([query_embedding], [page_embedding])[0][0]
|
326 |
+
logger.debug(f"Relevance score calculated: {score}")
|
327 |
+
return score
|
328 |
+
except Exception as e:
|
329 |
+
logger.exception(f"Error calculating relevance score: {str(e)}")
|
330 |
+
st.error(f"Error calculating relevance score: {str(e)}")
|
331 |
+
return 0
|
332 |
+
|
333 |
def calculate_relevancy_scores(df, model_type):
|
334 |
logging.info("Calculating relevancy scores")
|
335 |
with st.spinner('Calculating relevancy scores...'):
|