File size: 11,672 Bytes
9c49c2c
 
10e9b7d
9c49c2c
 
 
 
10e9b7d
3c4371f
9c49c2c
 
 
10e9b7d
d59f015
e80aab9
3db6293
e80aab9
9c49c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88a1595
 
 
 
9c49c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d65c66
9c49c2c
 
3c4371f
7e4a06b
9c49c2c
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
9c49c2c
 
36ed51a
c1fd3d2
3c4371f
9c49c2c
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
9c49c2c
 
31243f4
e80aab9
31243f4
 
3c4371f
9c49c2c
 
 
7d65c66
31243f4
 
e80aab9
9c49c2c
7d65c66
 
9c49c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284099
9c49c2c
 
 
 
 
 
 
 
 
 
 
 
31243f4
 
3c4371f
9c49c2c
 
 
 
31243f4
9c49c2c
 
 
 
 
 
 
 
 
 
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
9c49c2c
 
3c4371f
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
9c49c2c
e514fd7
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9c49c2c
 
 
7d65c66
 
e80aab9
9c49c2c
e80aab9
 
9c49c2c
7d65c66
3c4371f
9c49c2c
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
9c49c2c
7d65c66
 
9c49c2c
 
 
 
7d65c66
9c49c2c
 
 
 
7d65c66
9c49c2c
3c4371f
31243f4
9c49c2c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# import inspect
import json
import os
from pathlib import Path
from typing import Dict
from zipfile import ZipFile

import gradio as gr
import pandas as pd
import requests

from agent import BasicAgent

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

with open("prompt.json", mode="r") as f:
    prompt_template = json.load(f)


def post_process_answer(answer: str) -> str:
    """Post-process the answer to extract the final answer."""
    if "FINAL ANSWER:" in answer:
        answer = answer.split("FINAL ANSWER:")[-1].strip()
    return answer


def solve_question(question: Dict[str, str]) -> Dict[str, str]:
    """Solve the question using the BasicAgent."""
    agent = BasicAgent()
    question_text = question.get("question")
    task_id = question.get("task_id")
    if not question_text:
        raise ValueError("Question text is empty.")
    augmented_question = prompt_template["user_prompt"] + question_text
    if question.get("file_name"):
        file_url = DEFAULT_API_URL + "/files"
        response = requests.get(f"{file_url}/{question['task_id']}", timeout=15)
        # Check if the request was successful
        if response.status_code != 200:
            raise ValueError(f"Failed to fetch file for task {task_id}: {response.status_code} - {response.text}")
        file_path = Path("files") / question["file_name"]
        # Create files directory if it doesn't exist
        file_path.parent.mkdir(parents=True, exist_ok=True)
        with open(file_path, "wb") as f:
            f.write(response.content)
        if file_path.suffix == "zip":
            # If the file is a zip, we need to extract the files and give the LLM the list of files
            file_paths = []
            with ZipFile(file_path, "r") as zip_ref:
                for file_info in zip_ref.infolist():
                    # Read file content
                    file_data = zip_ref.read(file_info.filename)
                    extracted_file_path = file_path / file_info.filename
                    with open(extracted_file_path, "wb") as extracted_file:
                        extracted_file.write(file_data)
                    file_paths.append(str(extracted_file_path))
            augmented_question += prompt_template["use_files_prompt"] + str(file_paths)
        else:
            augmented_question += prompt_template["use_file_prompt"] + str(file_path)
    try:
        agent_response = agent(augmented_question)
        submitted_answer = post_process_answer(agent_response)
        return {
            "Task ID": task_id,
            "Question": augmented_question,
            "Submitted Answer": submitted_answer,
            "Full Answer": agent_response,
        }
    except Exception as e:
        print(f"Error running agent on task {task_id}: {e}")
        return {
            "Task ID": task_id,
            "Question": augmented_question,
            "Submitted Answer": f"AGENT ERROR: {e}",
            "Full Answer": "",
        }


def run_and_submit_all(profile: gr.OAuthProfile | None):
    """Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the
    results."""
    # --- Determine HF Space Runtime URL and Repo URL ---
    # Get the SPACE_ID for sending link to the code
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # In the case of an app running as a hugging Face space, this link points
    # toward your codebase ( useful for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # Run your Agent
    results_log = []
    answers_payload = []

    results_file_path = Path("files/results_log.jsonl")
    results_file_path.parent.mkdir(parents=True, exist_ok=True)
    solved_task_ids = []
    if results_file_path.exists():
        print(f"Results file already exists: {results_file_path}")
        with open(results_file_path, "r") as results_file:
            for line in results_file:
                result = json.loads(line)
                results_log.append(result)
                solved_task_ids.append(result["Task ID"])
    filtered_questions_data = [
        question
        for question in questions_data
        if question["task_id"] not in solved_task_ids
    ]
    if solved_task_ids:
        print(
            f"Found {len(solved_task_ids)} solved questions. "
            f"Running agent on remaining {len(filtered_questions_data)} questions."
        )
    else:
        print(f"Running agent on {len(questions_data)} questions...")
    for item in filtered_questions_data:
        result = solve_question(item)
        results_log.append(result)
    with open(results_file_path, "w") as results_file:
        for result in results_log:
            results_file.write(json.dumps(result) + "\n")
    for result in results_log:
        answers_payload.append(
            {
                "task_id": result["Task ID"],
                "submitted_answer": result["Submitted Answer"],
            }
        )

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return (
            "Agent did not produce any answers to submit.",
            pd.DataFrame(results_log),
        )

    # 4. Prepare Submission
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload,
    }
    status_update = (
        f"Agent finished. Submitting {len(answers_payload)} "
        f"answers for user '{username}'..."
    )
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/"
            f"{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(
        label="Run Status / Submission Result", lines=5, interactive=False
    )
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("\n" + "-" * 30 + " App Starting " + "-" * 30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")  # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:  # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(
            f"   Repo Tree URL: https://huggingface.co/spaces/"
            f"{space_id_startup}/tree/main"
        )
    else:
        print(
            "ℹ️  SPACE_ID environment variable not found (running locally?). "
            "Repo URL cannot be determined."
        )

    print("-" * (60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)