File size: 4,488 Bytes
9b03b75
 
 
 
 
 
 
 
 
 
 
 
 
e628c69
9b03b75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323a1b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
from fastai.vision.all import *
import gradio as gr
import pickle
import tempfile
from transformers import AutoTokenizer, AutoModelWithLMHead
from speechbrain.inference.interfaces import foreign_class



# Facial expression classifier

# Emotion
learn_emotion = load_learner('emotions_vgg.pkl')
learn_emotion_labels = learn_emotion.dls.vocab


# Predict
def predict(img):
    img = PILImage.create(img)
    pred_emotion, pred_emotion_idx, probs_emotion = learn_emotion.predict(img)
    predicted_emotion = learn_emotion_labels[pred_emotion_idx]
    return predicted_emotion


# Gradio
title = "Facial Emotion Detector"

description = gr.Markdown(
                """Ever wondered what a person might be feeling looking at their picture?
                 Well, now you can! Try this fun app. Just upload a facial image in JPG or
                 PNG format. You can now see what they might have felt when the picture
                 was taken.

                 **Tip**: Be sure to only include face to get best results. Check some sample images
                 below for inspiration!""").value

article = gr.Markdown(
             """**DISCLAIMER:** This model does not reveal the actual emotional state of a person. Use and
             interpret results at your own risk!. 

             **PREMISE:** The idea is to determine an overall emotion of a person
             based on the pictures. We are restricting pictures to only include close-up facial
             images.

             **DATA:** FER2013 dataset consists of 48x48 pixel grayscale images of faces.Images
             are assigned one of the 7 emotions: Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral.
             
              """).value

enable_queue=True

examples = ['happy1.jpg', 'happy2.jpg', 'angry1.png', 'angry2.jpg', 'neutral1.jpg', 'neutral2.jpg']

image_mode=gr.Interface(fn = predict, 
             inputs = gr.Image( image_mode='L'), 
             outputs = [gr.Label(label='Emotion')], #gr.Label(),
             title = title,
             examples = examples,
             description = description,
             article=article,
             allow_flagging='never')




# Txet Model

# Load tokenizer and model from pickles
with open("emotion_tokenizer.pkl", "rb") as f:
    tokenizer = pickle.load(f)

with open("emotion_model.pkl", "rb") as f:
    model = pickle.load(f)



def classify_emotion(text):
    # Tokenize input text and generate output
    input_ids = tokenizer.encode("emotion: " + text, return_tensors="pt")
    output = model.generate(input_ids)
    output_text = tokenizer.decode(output[0], skip_special_tokens=True)
    
    # Classify the emotion into positive, negative, or neutral
    if output_text in ["joy", "love"]:
        return "Positive"
    elif output_text == "surprise":
        return "Neutral"
    else:
        return "Negative"
    return output_text


text_model = gr.Interface(fn=classify_emotion, inputs="textbox", outputs="textbox")









# Initialize the classifier
classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")

def save_uploaded_file(uploaded_file):
    temp_dir = tempfile.TemporaryDirectory()
    file_path = os.path.join(temp_dir.name, uploaded_file.name)
    with open(file_path, "wb") as f:
        f.write(uploaded_file.getbuffer())
    return file_path


def emotion(file_path):
   
    if file_path:
        # Classify the file
        out_prob, score, index, text_lab = classifier.classify_file(file_path)
        if isinstance(text_lab, list):
            text_lab = text_lab[0]
        # Map the original labels to the desired categories
        emotion_mapping = {
            'neu': 'Neutral',
            'ang': 'Angry',
            'hap': 'Happy',
            'sad': 'Sadness'
        }
        # Get the corresponding category from the mapping
        emotion_category = emotion_mapping.get(text_lab, 'Unknown')
        
        emotion_category = emotion_mapping.get(text_lab, 'Unknown')
        # Return the emotion category
        return emotion_category
    else:
        return "Please provide the path to an audio file."





audio_model = gr.Interface(fn=emotion, inputs="textbox", outputs="textbox")







main_model = gr.TabbedInterface([text_model, image_mode,audio_model], ["Text Emotion Recognition", "Image Emotion Recognition" , "Audio Emotion Recognition"])

main_model.launch()