Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from fastai.vision.all import *
|
3 |
+
import gradio as gr
|
4 |
+
import pickle
|
5 |
+
import tempfile
|
6 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
7 |
+
from speechbrain.inference.interfaces import foreign_class
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
# Facial expression classifier
|
12 |
+
|
13 |
+
# Emotion
|
14 |
+
learn_emotion = load_learner('emotions_vgg19.pkl')
|
15 |
+
learn_emotion_labels = learn_emotion.dls.vocab
|
16 |
+
|
17 |
+
|
18 |
+
# Predict
|
19 |
+
def predict(img):
|
20 |
+
img = PILImage.create(img)
|
21 |
+
pred_emotion, pred_emotion_idx, probs_emotion = learn_emotion.predict(img)
|
22 |
+
predicted_emotion = learn_emotion_labels[pred_emotion_idx]
|
23 |
+
return predicted_emotion
|
24 |
+
|
25 |
+
|
26 |
+
# Gradio
|
27 |
+
title = "Facial Emotion Detector"
|
28 |
+
|
29 |
+
description = gr.Markdown(
|
30 |
+
"""Ever wondered what a person might be feeling looking at their picture?
|
31 |
+
Well, now you can! Try this fun app. Just upload a facial image in JPG or
|
32 |
+
PNG format. You can now see what they might have felt when the picture
|
33 |
+
was taken.
|
34 |
+
|
35 |
+
**Tip**: Be sure to only include face to get best results. Check some sample images
|
36 |
+
below for inspiration!""").value
|
37 |
+
|
38 |
+
article = gr.Markdown(
|
39 |
+
"""**DISCLAIMER:** This model does not reveal the actual emotional state of a person. Use and
|
40 |
+
interpret results at your own risk!.
|
41 |
+
|
42 |
+
**PREMISE:** The idea is to determine an overall emotion of a person
|
43 |
+
based on the pictures. We are restricting pictures to only include close-up facial
|
44 |
+
images.
|
45 |
+
|
46 |
+
**DATA:** FER2013 dataset consists of 48x48 pixel grayscale images of faces.Images
|
47 |
+
are assigned one of the 7 emotions: Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral.
|
48 |
+
|
49 |
+
""").value
|
50 |
+
|
51 |
+
enable_queue=True
|
52 |
+
|
53 |
+
examples = ['happy1.jpg', 'happy2.jpg', 'angry1.png', 'angry2.jpg', 'neutral1.jpg', 'neutral2.jpg']
|
54 |
+
|
55 |
+
image_mode=gr.Interface(fn = predict,
|
56 |
+
inputs = gr.Image( image_mode='L'),
|
57 |
+
outputs = [gr.Label(label='Emotion')], #gr.Label(),
|
58 |
+
title = title,
|
59 |
+
examples = examples,
|
60 |
+
description = description,
|
61 |
+
article=article,
|
62 |
+
allow_flagging='never')
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
# Txet Model
|
68 |
+
|
69 |
+
# Load tokenizer and model from pickles
|
70 |
+
with open("emotion_tokenizer.pkl", "rb") as f:
|
71 |
+
tokenizer = pickle.load(f)
|
72 |
+
|
73 |
+
with open("emotion_model.pkl", "rb") as f:
|
74 |
+
model = pickle.load(f)
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
def classify_emotion(text):
|
79 |
+
# Tokenize input text and generate output
|
80 |
+
input_ids = tokenizer.encode("emotion: " + text, return_tensors="pt")
|
81 |
+
output = model.generate(input_ids)
|
82 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
83 |
+
|
84 |
+
# Classify the emotion into positive, negative, or neutral
|
85 |
+
if output_text in ["joy", "love"]:
|
86 |
+
return "Positive"
|
87 |
+
elif output_text == "surprise":
|
88 |
+
return "Neutral"
|
89 |
+
else:
|
90 |
+
return "Negative"
|
91 |
+
return output_text
|
92 |
+
|
93 |
+
|
94 |
+
text_model = gr.Interface(fn=classify_emotion, inputs="textbox", outputs="textbox")
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
# Initialize the classifier
|
105 |
+
classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
|
106 |
+
|
107 |
+
def save_uploaded_file(uploaded_file):
|
108 |
+
temp_dir = tempfile.TemporaryDirectory()
|
109 |
+
file_path = os.path.join(temp_dir.name, uploaded_file.name)
|
110 |
+
with open(file_path, "wb") as f:
|
111 |
+
f.write(uploaded_file.getbuffer())
|
112 |
+
return file_path
|
113 |
+
|
114 |
+
|
115 |
+
def emotion(file_path):
|
116 |
+
|
117 |
+
if file_path:
|
118 |
+
# Classify the file
|
119 |
+
out_prob, score, index, text_lab = classifier.classify_file(file_path)
|
120 |
+
if isinstance(text_lab, list):
|
121 |
+
text_lab = text_lab[0]
|
122 |
+
# Map the original labels to the desired categories
|
123 |
+
emotion_mapping = {
|
124 |
+
'neu': 'Neutral',
|
125 |
+
'ang': 'Angry',
|
126 |
+
'hap': 'Happy',
|
127 |
+
'sad': 'Sadness'
|
128 |
+
}
|
129 |
+
# Get the corresponding category from the mapping
|
130 |
+
emotion_category = emotion_mapping.get(text_lab, 'Unknown')
|
131 |
+
|
132 |
+
emotion_category = emotion_mapping.get(text_lab, 'Unknown')
|
133 |
+
# Return the emotion category
|
134 |
+
return emotion_category
|
135 |
+
else:
|
136 |
+
return "Please provide the path to an audio file."
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
audio_model = gr.Interface(fn=emotion, inputs="textbox", outputs="textbox")
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
main_model = gr.TabbedInterface([text_model, image_mode,audio_model], ["Text Emotion Recognition", "Image Emotion Recognition" , "Audio Emotion Recognition"])
|
151 |
+
|
152 |
+
if _name_ == "_main_":
|
153 |
+
main_model.launch()
|