File size: 17,509 Bytes
40bf437 10e9b7d 7d65c66 3c4371f b8d6f51 2815130 2df61f5 df8feef b8d6f51 df8feef 143a3a8 d5ba12c b8d6f51 5f414d0 b8d6f51 143a3a8 2815130 143a3a8 2815130 143a3a8 2815130 143a3a8 2815130 143a3a8 2815130 143a3a8 2815130 143a3a8 2815130 143a3a8 b8d6f51 10e9b7d d59f015 e80aab9 3db6293 e80aab9 31243f4 d59f015 31243f4 2df61f5 31243f4 700858a b8d6f51 9c4403a b8d6f51 9c4403a b8d6f51 700858a 4b9f723 700858a 44eff0d 700858a df8feef 4b9f723 700858a 44eff0d 75cbae1 c6b407a 75cbae1 44eff0d 4021bf3 700858a b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
from __future__ import annotations
import os
import gradio as gr
import inspect
import pandas as pd
from agents import Agent, Runner, function_tool
from duckduckgo_search import DDGS
from agents import Agent, Runner
from markdownify import markdownify
from duckduckgo_search import DDGS
from bs4 import BeautifulSoup
from pydantic import BaseModel, Field
import nest_asyncio
import requests
from tavily import TavilyClient
import re
#from agents.extensions.models.litellm_model import LitellmModel
os.getenv("OPENAI_API_KEY")
#os.getenv("GEMINI_API_KEY")
os.getenv("TAVILY_API_KEY")
# add this
nest_asyncio.apply()
#Tools
@function_tool
def tavily_search(query: str) -> str:
"""
Perform a Tavily web search.
Args:
query (str): The search query string.
Returns:
str: Formatted search results.
"""
try:
client = TavilyClient(os.getenv("TAVILY_API_KEY"))
results = client.search(query=query, max_results=5)
formatted = []
for result in results.get("results", []):
formatted.append(f"**Title**: {result['title']}\n**URL**: {result['url']}\n**Content**: {result['content']}\n")
return "\n\n".join(formatted) or "No results found."
except Exception as e:
return f"Error using Tavily Search: {e}"
@function_tool
def visit_website(url: str) -> str:
"""
Extracts the main readable contents of a website at the given URL,
formats as markdown, and returns it as a string.
If there is an error, returns a concise error message.
"""
headers = {
"User-Agent": (
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
"AppleWebKit/537.36 (KHTML, like Gecko) "
"Chrome/91.0.4472.124 Safari/537.36"
)
}
try:
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
html_content = response.text
soup = BeautifulSoup(html_content, "html.parser")
# Remove unwanted tags for clarity
for tag in soup(["script", "style", "nav", "header", "footer", "aside", "meta"]):
tag.decompose()
# Extract main content; fallback to all text if .body missing
main_content = soup.body if soup.body else soup
markdown_text = markdownify(
str(main_content),
strip=["img", "iframe", "script", "meta", "button", "input", "svg"]
)
max_length = 5000 # Reduce if hitting timeouts or agent tool output limits
markdown_text = re.sub(r"\n\s*\n", "\n\n", markdown_text[:max_length])
return markdown_text.strip() if markdown_text else "No readable text found on this page."
except Exception as e:
return f"Error fetching the website: {e}"
@function_tool
def web_search(query: str) -> str:
"""
Perform a web search.
Args:
query (str): The search query string.
Returns:
str: The search results formatted in markdown.
"""
try:
results = DDGS().text(query, max_results=10)
if not results:
raise Exception("No search results found.")
formatted_results = []
for i, result in enumerate(results, 1):
title = result.get("title", "No title available.")
link = result.get("href", "No link available.")
snippet = result.get("body", "No description available.")
entry = " \n".join([
f"**Title**: {title}",
f"**Link**: {link}",
f"**Snippet**: {snippet}"
])
formatted_results.append(entry)
return "\n\n".join(formatted_results)
except Exception as e:
return f"Error executing the query: {e}"
@function_tool
def visit_website(url: str) -> str:
"""
Extract the contents of a website.
Args:
url (str): The URL of the website to visit.
Returns:
str: Formatted markdown ready for LLM consumption.
"""
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}
try:
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
html_content = response.text
soup = BeautifulSoup(html_content, 'html.parser')
for tag in soup(['script', 'style', 'nav', 'header', 'footer', 'aside', 'meta']):
tag.decompose()
main_content = soup.body
markdown_text = markdownify(str(main_content), strip=['img', 'iframe', 'script', 'meta', 'button', 'input', 'svg'])
max_length = 10000
markdown_text = re.sub(r'\n\s*\n', '\n\n', markdown_text[:max_length])
return markdown_text
except requests.RequestException as e:
return f"Error fetching the website: {e}"
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
instructions = """
You are a ReAct (Reason-Act-Observe) agent that searches the internet to find accurate answers to questions.
## Available Tools
WebSearchTool
- **WebSearchTool**: Search the web for information
- **tavily_search**: Another tool to Search the web for information
- **visit_website**: Visit specific webpages for detailed content
## Output Format Rules
Your final answer must be **exactly one** of these formats:
- **Single number**: No commas, units, or symbols (unless explicitly requested)
- **Single word/phrase**: No abbreviations (write "Los Angeles" not "LA")
- **Comma-separated list**: Each item follows the above rules
**Important**: Provide ONLY the final answer - no explanations, markdown, or extra text.
## ReAct Process
Follow this cycle until you find the answer:
**Thought**: [Internal reasoning about your next step]
**Action**: [Single tool call]
**Observation**: [Tool result will appear here]
## Quality Guidelines
- Use multiple sources when possible to verify accuracy
- For recent events, prioritize newer sources
- If information conflicts between sources, use the most authoritative source
- For numerical data, ensure you're using the most current figures
## Before Final Answer
- Internally verify: "Does my answer violate format rules (extra text, wrong units, abbreviations)?"
- Before providing a final answer, always ensure it contains the minimal amount of text possible.
## Examples
- Q: What is 15 + 27? → 42
- Q: What is the capital of France? → Paris
- Q: What are the top 3 most populous US states? → California, Texas, Florida
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
"""
my_agent = Agent(
name="Expert Question Answering Agent",
instructions=instructions,
tools = [
tavily_search,
visit_website
],
model="gpt-4o-mini"
)
result = Runner.run_sync(
my_agent,
input=question,
max_turns=25
)
print(f"Bilan {result}")
steps = result.to_input_list()
print("----- Agent Reasoning Trace -----\n")
for idx, step in enumerate(steps):
print(f"Step {idx + 1}:")
for key, value in step.items():
# Special handling for 'content' which can be a list or a string
if key == "content":
if isinstance(value, list):
for item in value:
if isinstance(item, dict) and "text" in item:
print(f" {key}: {item['text']}")
else:
print(f" {key}: {item}")
else:
print(f" {key}: {value}")
else:
print(f" {key}: {value}")
print("-" * 40)
print(f"Agent gave answer (first 50 chars): {result.final_output[:50]}...")
return result.final_output
# result = Runner.run_sync(
# my_agent,
# input=question,
# max_turns=25
# )
# print("\n--- Intermediate Reasoning ---")
# for step in result.steps:
# print("🧠 Thought:", step.thought)
# print("⚙️ Action:", step.tool_call)
# print("🔍 Observation:", step.observation)
# print("-" * 50)
# print(f"Agent returning fixed answer(first 50 chars): {result.final_output[:50]}...")
# return result.final_output
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |