Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,624 Bytes
522e174 1f6b391 a6a707a 522e174 1f6b391 522e174 5749a76 a6a707a b26fd1f a6a707a b26fd1f 522e174 b26fd1f 522e174 52c2787 522e174 52c2787 522e174 2a9695b 522e174 305e0ae 522e174 52c2787 522e174 305e0ae 52c2787 305e0ae 522e174 4624aaa 1f6b391 4624aaa 522e174 a6a707a 522e174 1f6b391 522e174 4624aaa 522e174 ee3ecd6 5749a76 522e174 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
## Due to a small bug when installing exllamav2 from dev branch directly we require CUDA paths
import cuda_bug
cuda_bug.install_cuda_toolkit_requirements()
##
import gradio as gr
from gradio.data_classes import FileData
from huggingface_hub import snapshot_download
from pathlib import Path
import base64
import spaces
import os
import sys, os
import torch
from exllamav2 import (
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Tokenizer,
ExLlamaV2VisionTower,
)
from exllamav2.generator import (
ExLlamaV2DynamicGenerator,
ExLlamaV2Sampler,
)
from PIL import Image
import requests
from huggingface_hub import snapshot_download
from tqdm import tqdm
default_max_context = 16384
default_max_output = 512
default_bpw = "4.0bpw"
available_models = [
"2.5bpw",
"3.0bpw",
"3.5bpw",
"4.0bpw",
"4.5bpw",
"5.0bpw",
"6.0bpw",
"8.0bpw"
]
dirs = {}
for model in tqdm(available_models):
dirs.update({model: snapshot_download(repo_id="turboderp/pixtral-12b-exl2", revision=model)})
@spaces.GPU(duration=45)
def run_inference(message, history, model_picked, context_size, max_output):
if not model_picked:
model_picked = default_bpw
if not context_size:
context_size = default_max_context
if not max_output:
max_output = default_max_output
local_dir = dirs[model_picked]
# Loading only once GPU available
config = ExLlamaV2Config(local_dir)
config.max_seq_len = context_size
vision_model = ExLlamaV2VisionTower(config)
vision_model.load(progress = True)
model = ExLlamaV2(config)
cache = ExLlamaV2Cache(model, lazy = True, max_seq_len = context_size)
model.load_autosplit(cache, progress = True)
tokenizer = ExLlamaV2Tokenizer(config)
generator = ExLlamaV2DynamicGenerator(
model = model,
cache = cache,
tokenizer = tokenizer
)
# Making Prompt Template
prompt = ""
image_prompt = ""
images_embeddings = []
for couple in history:
if type(couple[0]) is tuple:
images_embeddings += [
vision_model.get_image_embeddings(
model = model,
tokenizer = tokenizer,
image = img,
text_alias = alias,
)
for (alias, img) in [("{{IMAGE_" + str(len(images_embeddings)+i+1) + "}}", Image.open(path)) for i, path in enumerate(couple[0])]
]
image_prompt = ""
for i in range(len(couple[0])):
image_prompt += "{{IMAGE_" + str(len(images_embeddings)-len(couple[0])+i+1) + "}}"
elif couple[0]:
prompt += "[INST]" + image_prompt + couple[0] + "[/INST]"
prompt += couple[1] + "</s>"
if type(message) is dict:
images_embeddings += [
vision_model.get_image_embeddings(
model = model,
tokenizer = tokenizer,
image = img,
text_alias = alias,
)
for (alias, img) in [("{{IMAGE_" + str(len(images_embeddings)+i+1) + "}}", Image.open(path['path'] if type(path) is dict else path)) for i, path in enumerate(message['files'])]
]
image_prompt = ""
for i in range(len(message['files'])):
image_prompt += "{{IMAGE_" + str(len(images_embeddings)-len(message['files'])+i+1) + "}}"
prompt += "[INST]" + image_prompt + message["text"] + "[/INST]"
else:
prompt += "[INST]" + image_prompt + message + "[/INST]"
print(prompt)
# Gnerating Response
output = generator.generate(
prompt = prompt,
max_new_tokens = max_output,
add_bos = True,
encode_special_tokens = True,
decode_special_tokens = True,
stop_conditions = [tokenizer.eos_token_id],
gen_settings = ExLlamaV2Sampler.Settings.greedy(),
embeddings = images_embeddings
)
result = output.split("[/INST]")[-1]
print(result)
return result
description="""A demo chat interface with Pixtral 12B EXL2 Quants, deployed using **ExllamaV2**!
The model will be loaded once the GPU is available. This space specifically will load by default Pixtral at 4bpw from the following repository: [turboderp/pixtral-12b-exl2](https://huggingface.co/turboderp/pixtral-12b-exl2). Other quantization options are available.
The current version of ExllamaV2 running is the dev branch, not the master branch: [ExllamaV2](https://github.com/turboderp/exllamav2/tree/dev).
The model at **4bpw and 16k context size fits in less than 12GB of VRAM**, and at **2.5bpw and short context can potentially fit in 8GB of VRAM**!
The current default settings are:
- Model Quant: 4.0bpw
- Context Size: 16k tokens
- Max Output: 512 tokens
You can select other quants and experiment!
Thanks, turboderp!"""
examples = [
[
{"text": "What are the similarities and differences between these two experiments?", "files":["test_image_1.jpg", "test_image_2.jpg"]},
]
]
drop = gr.Dropdown(available_models, label="EXL2 Quant", value=default_bpw)
context_size_gradio = gr.Slider(minimum = 256, maximum = 32768, label="Context Size", value=default_max_context, step = 1)
output_length_gradio = gr.Slider(minimum = 1, maximum = 4096, label="Max Ouput Length", value=default_max_output, step = 1)
demo = gr.ChatInterface(fn=run_inference, examples = examples, title="Pixtral 12B EXL2", multimodal=True, description=description, additional_inputs = [drop, context_size_gradio, output_length_gradio])
demo.queue().launch() |