File size: 4,777 Bytes
7c6b8f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a92dd6
7c6b8f3
 
 
 
abae92c
7c6b8f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5e4551
7c6b8f3
 
 
 
 
0ed57e7
7c6b8f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5e4551
7c6b8f3
 
 
5e23a7b
4a92dd6
 
7c6b8f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# -*- coding: utf-8 -*-

import argparse
import re
import os

import streamlit as st
import random
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import tokenizers

#os.environ["TOKENIZERS_PARALLELISM"] = "false"

random.seed(None)
suggested_text_list = ['诪讟专转 讛讘专讬讗讛']

@st.cache(hash_funcs={tokenizers.Tokenizer: id, tokenizers.AddedToken: id})
def load_model(model_name):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)
    return model, tokenizer

def extend(input_text, max_size=20, top_k=50, top_p=0.95):
    if len(input_text) == 0:
        input_text = ""

    encoded_prompt = tokenizer.encode(
    input_text, add_special_tokens=False, return_tensors="pt")

    encoded_prompt = encoded_prompt.to(device)

    if encoded_prompt.size()[-1] == 0:
        input_ids = None
    else:
        input_ids = encoded_prompt
    
    do_sample = False if top_k ==0 and top_p == 1.0 else True
    output_sequences = model.generate(
    input_ids=input_ids,
    max_length=max_size + len(encoded_prompt[0]),
    top_k=top_k, 
    top_p=top_p, 
    do_sample=do_sample,
    repetition_penalty=25.0,
    num_return_sequences=1)

    # Remove the batch dimension when returning multiple sequences
    if len(output_sequences.shape) > 2:
        output_sequences.squeeze_()

    generated_sequences = []

    for generated_sequence_idx, generated_sequence in enumerate(output_sequences):        
        generated_sequence = generated_sequence.tolist()

        # Decode text
        text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)

        # Remove all text after the stop token
        text = text[: text.find(stop_token) if stop_token else None]

        # Remove all text after 3 newlines
        text = text[: text.find(new_lines) if new_lines else None]

        # Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing
        total_sequence = (
            input_text + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :]
        )

        generated_sequences.append(total_sequence)
    
    parsed_text = total_sequence.replace("<|startoftext|>", "").replace("\r","").replace("\n\n", "\n")
    if len(parsed_text) == 0:
        parsed_text = "砖讙讬讗讛"
    return parsed_text

if __name__ == "__main__":
    st.title("Light generator")
    pre_model_path = "orendar/light_generator"
    model, tokenizer = load_model(pre_model_path)

    stop_token = "<|endoftext|>"
    new_lines = "\n\n\n"

    np.random.seed(None)
    random_seed = np.random.randint(10000,size=1)    

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()

    torch.manual_seed(random_seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(random_seed)

    model.to(device)

    text_area = st.text_area("Enter the first few words (or leave blank), tap on \"Generate Text\" below. Tapping again may produce a different result.", '诪讟专转 讛讘专讬讗讛')

    st.sidebar.subheader("Configurable parameters")

    max_len = st.sidebar.slider("Max-Length", 0, 256, 70, help="The maximum length of the sequence to be generated.")
    top_k = st.sidebar.slider("Top-K", 0, 100, 0, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
    top_p = st.sidebar.slider("Top-P", 0.0, 1.0, 1.0, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.")

    if st.button("Generate Text"):
        with st.spinner(text="Generating results..."):
            st.subheader("Result")
            print(f"device:{device}, n_gpu:{n_gpu}, random_seed:{random_seed}, maxlen:{max_len}, top_k:{top_k}, top_p:{top_p}")
            if len(text_area.strip()) == 0:
                text_area = random.choice(suggested_text_list)
            result = extend(input_text=text_area,                         
                            max_size=int(max_len),                         
                            top_k=int(top_k),
                            top_p=float(top_p))

            #<div class="rtl" dir="rtl" style="text-align:right;">
            st.markdown(f"<p dir=\"rtl\" style=\"text-align:right;\"> {result} </p>", unsafe_allow_html=True)
            print(f"\"{result}\"")      
    

    st.markdown("<footer><hr><p style=\"font-size:14px\">Enjoy the light.</p><p style=\"font-size:12px\">Created by Oren Dar. Many thanks to Norod78 for providing the base model and the Spaces example!</a></p></footer> ", unsafe_allow_html=True)