orendar commited on
Commit
7c6b8f3
โ€ข
1 Parent(s): 6a5683f

initial commit

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Light generator
3
+ emoji: ๐Ÿ“š
4
+ colorFrom: blue
5
+ colorTo: gray
6
+ sdk: streamlit
7
+ app_file: app.py
8
+ pinned: true
9
+ ---
10
+
11
+ # Configuration
12
+
13
+ `title`: _string_
14
+ Display title for the Space
15
+
16
+ `emoji`: _string_
17
+ Space emoji (emoji-only character allowed)
18
+
19
+ `colorFrom`: _string_
20
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
21
+
22
+ `colorTo`: _string_
23
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
24
+
25
+ `sdk`: _string_
26
+ Can be either `gradio` or `streamlit`
27
+
28
+ `app_file`: _string_
29
+ Path to your main application file (which contains either `gradio` or `streamlit` Python code).
30
+ Path is relative to the root of the repository.
31
+
32
+ `pinned`: _boolean_
33
+ Whether the Space stays on top of your list.
.ipynb_checkpoints/app-checkpoint.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import argparse
4
+ import re
5
+ import os
6
+
7
+ import streamlit as st
8
+ import random
9
+ import numpy as np
10
+ import torch
11
+ from transformers import AutoTokenizer, AutoModelForCausalLM
12
+ import tokenizers
13
+
14
+ #os.environ["TOKENIZERS_PARALLELISM"] = "false"
15
+
16
+ random.seed(None)
17
+ suggested_text_list = ['ืœื›ืŸ, ']
18
+
19
+ @st.cache(hash_funcs={tokenizers.Tokenizer: id, tokenizers.AddedToken: id})
20
+ def load_model(model_name):
21
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
22
+ model = AutoModelForCausalLM.from_pretrained(model_name)
23
+ return model, tokenizer
24
+
25
+ def extend(input_text, max_size=20, top_k=50, top_p=0.95):
26
+ if len(input_text) == 0:
27
+ input_text = ""
28
+
29
+ encoded_prompt = tokenizer.encode(
30
+ input_text, add_special_tokens=False, return_tensors="pt")
31
+
32
+ encoded_prompt = encoded_prompt.to(device)
33
+
34
+ if encoded_prompt.size()[-1] == 0:
35
+ input_ids = None
36
+ else:
37
+ input_ids = encoded_prompt
38
+
39
+ output_sequences = model.generate(
40
+ input_ids=input_ids,
41
+ max_length=max_size + len(encoded_prompt[0]),
42
+ top_k=top_k,
43
+ top_p=top_p,
44
+ do_sample=True,
45
+ repetition_penalty=25.0,
46
+ num_return_sequences=1)
47
+
48
+ # Remove the batch dimension when returning multiple sequences
49
+ if len(output_sequences.shape) > 2:
50
+ output_sequences.squeeze_()
51
+
52
+ generated_sequences = []
53
+
54
+ for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
55
+ generated_sequence = generated_sequence.tolist()
56
+
57
+ # Decode text
58
+ text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
59
+
60
+ # Remove all text after the stop token
61
+ text = text[: text.find(stop_token) if stop_token else None]
62
+
63
+ # Remove all text after 3 newlines
64
+ text = text[: text.find(new_lines) if new_lines else None]
65
+
66
+ # Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing
67
+ total_sequence = (
68
+ input_text + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :]
69
+ )
70
+
71
+ generated_sequences.append(total_sequence)
72
+
73
+ parsed_text = total_sequence.replace("<|startoftext|>", "").replace("\r","").replace("\n\n", "\n")
74
+ if len(parsed_text) == 0:
75
+ parsed_text = "ืฉื’ื™ืื”"
76
+ return parsed_text
77
+
78
+ if __name__ == "__main__":
79
+ st.title("Light generator")
80
+ pre_model_path = "orendar/light_generator"
81
+ model, tokenizer = load_model(pre_model_path)
82
+
83
+ stop_token = "<|endoftext|>"
84
+ new_lines = "\n\n\n"
85
+
86
+ np.random.seed(None)
87
+ random_seed = np.random.randint(10000,size=1)
88
+
89
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
90
+ n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()
91
+
92
+ torch.manual_seed(random_seed)
93
+ if n_gpu > 0:
94
+ torch.cuda.manual_seed_all(random_seed)
95
+
96
+ model.to(device)
97
+
98
+ text_area = st.text_area("Enter the first few words (or leave blank), tap on \"Generate Text\" below. Tapping again will produce a different result.", 'ืœื›ืŸ, ')
99
+
100
+ st.sidebar.subheader("Configurable parameters")
101
+
102
+ max_len = st.sidebar.slider("Max-Length", 0, 256, 192,help="The maximum length of the sequence to be generated.")
103
+ top_k = st.sidebar.slider("Top-K", 0, 100, 40, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
104
+ top_p = st.sidebar.slider("Top-P", 0.0, 1.0, 0.92, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.")
105
+
106
+ if st.button("Generate Text"):
107
+ with st.spinner(text="Generating results..."):
108
+ st.subheader("Result")
109
+ print(f"device:{device}, n_gpu:{n_gpu}, random_seed:{random_seed}, maxlen:{max_len}, top_k:{top_k}, top_p:{top_p}")
110
+ if len(text_area.strip()) == 0:
111
+ text_area = random.choice(suggested_text_list)
112
+ result = extend(input_text=text_area,
113
+ max_size=int(max_len),
114
+ top_k=int(top_k),
115
+ top_p=float(top_p))
116
+
117
+ print("Done length: " + str(len(result)) + " bytes")
118
+ #<div class="rtl" dir="rtl" style="text-align:right;">
119
+ st.markdown(f"<p dir=\"rtl\" style=\"text-align:right;\"> {result} </p>", unsafe_allow_html=True)
120
+ st.write("\n\nResult length: " + str(len(result)) + " bytes")
121
+ print(f"\"{result}\"")
122
+
123
+ st.markdown(
124
+ """This model was trained on archive materials."""
125
+ )
126
+
127
+ st.markdown("<footer><hr><p style=\"font-size:14px\">Enjoy the light.</p><p style=\"font-size:12px\">Created by Oren Dar. Many thanks to Norod78 for providing the base model and the Spaces example!</a></p></footer> ", unsafe_allow_html=True)
.ipynb_checkpoints/start-checkpoint.sh ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+ set -e
3
+
4
+ if [ "$DEBUG" = true ] ; then
5
+ echo 'Debugging - ON'
6
+ nodemon --exec streamlit run app.py
7
+ else
8
+ echo 'Debugging - OFF'
9
+ streamlit run app.py
10
+ fi
README.md CHANGED
@@ -1,12 +1,33 @@
1
  ---
2
- title: Light_generator
3
- emoji: ๐Ÿ“ˆ
4
- colorFrom: yellow
5
- colorTo: pink
6
  sdk: streamlit
7
- sdk_version: 1.2.0
8
  app_file: app.py
9
- pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Light generator
3
+ emoji: ๐Ÿ“š
4
+ colorFrom: blue
5
+ colorTo: gray
6
  sdk: streamlit
 
7
  app_file: app.py
8
+ pinned: true
9
  ---
10
 
11
+ # Configuration
12
+
13
+ `title`: _string_
14
+ Display title for the Space
15
+
16
+ `emoji`: _string_
17
+ Space emoji (emoji-only character allowed)
18
+
19
+ `colorFrom`: _string_
20
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
21
+
22
+ `colorTo`: _string_
23
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
24
+
25
+ `sdk`: _string_
26
+ Can be either `gradio` or `streamlit`
27
+
28
+ `app_file`: _string_
29
+ Path to your main application file (which contains either `gradio` or `streamlit` Python code).
30
+ Path is relative to the root of the repository.
31
+
32
+ `pinned`: _boolean_
33
+ Whether the Space stays on top of your list.
app.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import argparse
4
+ import re
5
+ import os
6
+
7
+ import streamlit as st
8
+ import random
9
+ import numpy as np
10
+ import torch
11
+ from transformers import AutoTokenizer, AutoModelForCausalLM
12
+ import tokenizers
13
+
14
+ #os.environ["TOKENIZERS_PARALLELISM"] = "false"
15
+
16
+ random.seed(None)
17
+ suggested_text_list = ['ืœื›ืŸ, ']
18
+
19
+ @st.cache(hash_funcs={tokenizers.Tokenizer: id, tokenizers.AddedToken: id})
20
+ def load_model(model_name):
21
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
22
+ model = AutoModelForCausalLM.from_pretrained(model_name)
23
+ return model, tokenizer
24
+
25
+ def extend(input_text, max_size=20, top_k=50, top_p=0.95):
26
+ if len(input_text) == 0:
27
+ input_text = ""
28
+
29
+ encoded_prompt = tokenizer.encode(
30
+ input_text, add_special_tokens=False, return_tensors="pt")
31
+
32
+ encoded_prompt = encoded_prompt.to(device)
33
+
34
+ if encoded_prompt.size()[-1] == 0:
35
+ input_ids = None
36
+ else:
37
+ input_ids = encoded_prompt
38
+
39
+ output_sequences = model.generate(
40
+ input_ids=input_ids,
41
+ max_length=max_size + len(encoded_prompt[0]),
42
+ top_k=top_k,
43
+ top_p=top_p,
44
+ do_sample=True,
45
+ repetition_penalty=25.0,
46
+ num_return_sequences=1)
47
+
48
+ # Remove the batch dimension when returning multiple sequences
49
+ if len(output_sequences.shape) > 2:
50
+ output_sequences.squeeze_()
51
+
52
+ generated_sequences = []
53
+
54
+ for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
55
+ generated_sequence = generated_sequence.tolist()
56
+
57
+ # Decode text
58
+ text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
59
+
60
+ # Remove all text after the stop token
61
+ text = text[: text.find(stop_token) if stop_token else None]
62
+
63
+ # Remove all text after 3 newlines
64
+ text = text[: text.find(new_lines) if new_lines else None]
65
+
66
+ # Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing
67
+ total_sequence = (
68
+ input_text + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :]
69
+ )
70
+
71
+ generated_sequences.append(total_sequence)
72
+
73
+ parsed_text = total_sequence.replace("<|startoftext|>", "").replace("\r","").replace("\n\n", "\n")
74
+ if len(parsed_text) == 0:
75
+ parsed_text = "ืฉื’ื™ืื”"
76
+ return parsed_text
77
+
78
+ if __name__ == "__main__":
79
+ st.title("Light generator")
80
+ pre_model_path = "orendar/light_generator"
81
+ model, tokenizer = load_model(pre_model_path)
82
+
83
+ stop_token = "<|endoftext|>"
84
+ new_lines = "\n\n\n"
85
+
86
+ np.random.seed(None)
87
+ random_seed = np.random.randint(10000,size=1)
88
+
89
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
90
+ n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()
91
+
92
+ torch.manual_seed(random_seed)
93
+ if n_gpu > 0:
94
+ torch.cuda.manual_seed_all(random_seed)
95
+
96
+ model.to(device)
97
+
98
+ text_area = st.text_area("Enter the first few words (or leave blank), tap on \"Generate Text\" below. Tapping again will produce a different result.", 'ืœื›ืŸ, ')
99
+
100
+ st.sidebar.subheader("Configurable parameters")
101
+
102
+ max_len = st.sidebar.slider("Max-Length", 0, 256, 192,help="The maximum length of the sequence to be generated.")
103
+ top_k = st.sidebar.slider("Top-K", 0, 100, 40, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
104
+ top_p = st.sidebar.slider("Top-P", 0.0, 1.0, 0.92, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.")
105
+
106
+ if st.button("Generate Text"):
107
+ with st.spinner(text="Generating results..."):
108
+ st.subheader("Result")
109
+ print(f"device:{device}, n_gpu:{n_gpu}, random_seed:{random_seed}, maxlen:{max_len}, top_k:{top_k}, top_p:{top_p}")
110
+ if len(text_area.strip()) == 0:
111
+ text_area = random.choice(suggested_text_list)
112
+ result = extend(input_text=text_area,
113
+ max_size=int(max_len),
114
+ top_k=int(top_k),
115
+ top_p=float(top_p))
116
+
117
+ print("Done length: " + str(len(result)) + " bytes")
118
+ #<div class="rtl" dir="rtl" style="text-align:right;">
119
+ st.markdown(f"<p dir=\"rtl\" style=\"text-align:right;\"> {result} </p>", unsafe_allow_html=True)
120
+ st.write("\n\nResult length: " + str(len(result)) + " bytes")
121
+ print(f"\"{result}\"")
122
+
123
+ st.markdown(
124
+ """This model was trained on archive materials."""
125
+ )
126
+
127
+ st.markdown("<footer><hr><p style=\"font-size:14px\">Enjoy the light.</p><p style=\"font-size:12px\">Created by Oren Dar. Many thanks to Norod78 for providing the base model and the Spaces example!</a></p></footer> ", unsafe_allow_html=True)
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ streamlit
2
+ transformers
3
+ tokenizers
4
+ torch
start.sh ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+ set -e
3
+
4
+ if [ "$DEBUG" = true ] ; then
5
+ echo 'Debugging - ON'
6
+ nodemon --exec streamlit run app.py
7
+ else
8
+ echo 'Debugging - OFF'
9
+ streamlit run app.py
10
+ fi