Spaces:
Runtime error
Runtime error
File size: 8,657 Bytes
5f625b7 a8236f5 6693180 a8236f5 bb01ced 91bb6b8 5f625b7 0ac620d a8236f5 5f625b7 0ac620d 5f625b7 5becf31 699d13a a8236f5 f2ed596 5f625b7 f2ed596 5f625b7 f2ed596 5f625b7 f2ed596 5f625b7 f2ed596 5f625b7 f2ed596 5f625b7 f2ed596 5f625b7 f2ed596 5f625b7 f2ed596 5f625b7 f2ed596 5f625b7 f2ed596 5f625b7 f2ed596 5f625b7 f2ed596 5f625b7 f2ed596 5f625b7 f2ed596 5f625b7 699d13a 2baebe5 699d13a f2ed596 6407a06 f2ed596 6407a06 0ac620d 6407a06 699d13a 2baebe5 699d13a 0ac620d 6407a06 2baebe5 5f625b7 5becf31 a8236f5 0ac620d a8236f5 5f625b7 a8236f5 0ac620d a8236f5 0ac620d 91bb6b8 5f625b7 a8236f5 0ac620d fa7e143 0ac620d 5f625b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
from haystack.document_stores.faiss import FAISSDocumentStore
from haystack.nodes.retriever import EmbeddingRetriever
from haystack.nodes.ranker import BaseRanker
from haystack.pipelines import Pipeline
from haystack.document_stores.base import BaseDocumentStore
from haystack.schema import Document
from typing import Optional, List
from huggingface_hub import get_inference_endpoint
from datasets import load_dataset
from time import perf_counter
import gradio as gr
import numpy as np
import requests
import os
TOP_K = 2
BATCH_SIZE = 16
HF_TOKEN = os.getenv("HF_TOKEN")
RANKER_URL = os.getenv("RANKER_URL")
RETRIEVER_URL = os.getenv("RETRIEVER_URL")
RETRIEVER_IE = get_inference_endpoint(
"fastrag-retriever", namespace="optimum-intel", token=HF_TOKEN
)
RANKER_IE = get_inference_endpoint(
"fastrag-ranker", namespace="optimum-intel", token=HF_TOKEN
)
def check_inference_endpoints():
RETRIEVER_IE.update()
RANKER_IE.update()
messages = []
if RETRIEVER_IE.status in ["initializing", "pending"]:
messages += [
f"Retriever Inference Endpoint is {RETRIEVER_IE.status}. Please wait a few seconds and try again."
]
elif RETRIEVER_IE.status in ["paused", "scaledToZero"]:
messages += [
f"Retriever Inference Endpoint is {RETRIEVER_IE.status}. Resuming it. Please wait a few seconds and try again."
]
RETRIEVER_IE.resume()
if RANKER_IE.status in ["initializing", "pending"]:
messages += [
f"Ranker Inference Endpoint is {RANKER_IE.status}. Please wait a few seconds and try again."
]
elif RANKER_IE.status in ["paused", "scaledToZero"]:
messages += [
f"Ranker Inference Endpoint is {RANKER_IE.status}. Resuming it. Please wait a few seconds and try again."
]
RANKER_IE.resume()
if len(messages) > 0:
return "<br>".join(messages)
else:
return None
def post(url, payload):
response = requests.post(
url,
json=payload,
headers={"Authorization": f"Bearer {HF_TOKEN}"},
)
return response.json()
def method_timer(method):
def timed(self, *args, **kw):
start_time = perf_counter()
result = method(self, *args, **kw)
end_time = perf_counter()
print(
f"{self.__class__.__name__}.{method.__name__} took {end_time - start_time} seconds"
)
return result
return timed
class Retriever(EmbeddingRetriever):
def __init__(
self,
document_store: Optional[BaseDocumentStore] = None,
top_k: int = 10,
batch_size: int = 32,
scale_score: bool = True,
):
self.document_store = document_store
self.top_k = top_k
self.batch_size = batch_size
self.scale_score = scale_score
@method_timer
def embed_queries(self, queries: List[str]) -> np.ndarray:
payload = {"queries": queries, "inputs": ""}
response = post(RETRIEVER_URL, payload)
if "error" in response:
raise gr.Error(response["error"])
arrays = np.array(response)
return arrays
@method_timer
def embed_documents(self, documents: List[Document]) -> np.ndarray:
documents = [d.to_dict() for d in documents]
for doc in documents:
doc["embedding"] = None
payload = {"documents": documents, "inputs": ""}
response = post(RETRIEVER_URL, payload)
if "error" in response:
raise gr.Error(response["error"])
arrays = np.array(response)
return arrays
class Ranker(BaseRanker):
@method_timer
def predict(
self, query: str, documents: List[Document], top_k: Optional[int] = None
) -> List[Document]:
documents = [d.to_dict() for d in documents]
for doc in documents:
doc["embedding"] = None
payload = {"query": query, "documents": documents, "top_k": top_k, "inputs": ""}
response = post(RANKER_URL, payload)
if "error" in response:
raise gr.Error(response["error"])
return [Document.from_dict(d) for d in response]
@method_timer
def predict_batch(
self,
queries: List[str],
documents: List[List[Document]],
batch_size: Optional[int] = None,
top_k: Optional[int] = None,
) -> List[List[Document]]:
documents = [[d.to_dict() for d in docs] for docs in documents]
for docs in documents:
for doc in docs:
doc["embedding"] = None
payload = {
"queries": queries,
"documents": documents,
"batch_size": batch_size,
"top_k": top_k,
"inputs": "",
}
response = post(RANKER_URL, payload)
if "error" in response:
raise gr.Error(response["error"])
return [[Document.from_dict(d) for d in docs] for docs in response]
if (
os.path.exists("/data/faiss_document_store.db")
and os.path.exists("/data/faiss_index.json")
and os.path.exists("/data/faiss_index")
):
document_store = FAISSDocumentStore.load("/data/faiss_index")
retriever = Retriever(
document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
)
document_store.save(index_path="/data/faiss_index")
else:
for file in [
"/data/faiss_document_store.db",
"/data/faiss_index.json",
"/data/faiss_index",
]:
try:
os.remove(file)
except FileNotFoundError:
pass
document_store = FAISSDocumentStore(
sql_url="sqlite:////data/faiss_document_store.db",
return_embedding=True,
embedding_dim=384,
)
document_store.write_documents(
load_dataset("bilgeyucel/seven-wonders", split="train")
)
retriever = Retriever(
document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
)
document_store.update_embeddings(retriever=retriever)
document_store.save(index_path="/data/faiss_index")
ranker = Ranker()
pipe = Pipeline()
pipe.add_node(component=retriever, name="Retriever", inputs=["Query"])
pipe.add_node(component=ranker, name="Ranker", inputs=["Retriever"])
def run(query: str) -> dict:
message = check_inference_endpoints()
if message is not None:
return f"""
<h2>Service Unavailable</h2>
<p>{message}</p>
"""
pipe_output = pipe.run(query=query)
output = f"""<h2>Top {TOP_K} Documents</h2>"""
for i, doc in enumerate(pipe_output["documents"]):
output += f"""
<h3>Document {i + 1}</h3>
<p><strong>ID:</strong> {doc.id}</p>
<p><strong>Score:</strong> {doc.score}</p>
<p><strong>Content:</strong> {doc.content}</p>
"""
return output
examples = [
"Where is Gardens of Babylon?",
"Why did people build Great Pyramid of Giza?",
"What does Rhodes Statue look like?",
"Why did people visit the Temple of Artemis?",
"What is the importance of Colossus of Rhodes?",
"What happened to the Tomb of Mausolus?",
"How did Colossus of Rhodes collapse?",
]
input_text = gr.components.Textbox(
label="Query", placeholder="Enter a query", value=examples[0], lines=1
)
output_html = gr.components.HTML(label="Documents")
gr.Interface(
fn=run,
inputs=input_text,
outputs=output_html,
examples=examples,
cache_examples=False,
allow_flagging="never",
title="End-to-End Retrieval & Ranking with Hugging Face Inference Endpoints and Spaces",
description="""## A [haystack](https://haystack.deepset.ai/) pipeline with the following components
- <strong>Document Store</strong>: A [FAISS document store](https://github.com/facebookresearch/faiss/tree/main) containing the [`seven-wonders` dataset](https://huggingface.co/datasets/bilgeyucel/seven-wonders), created on this Space's [persistent storage](https://huggingface.co/docs/hub/en/spaces-storage).
- <strong>Retriever</strong>: [Quantized FastRAG Retriever](https://huggingface.co/optimum-intel/fastrag-retriever) deployed on [Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index) + Intel Sapphire Rapids CPU.
- <strong>Ranker</strong>: [Quantized FastRAG Retriever](https://huggingface.co/optimum-intel/fastrag-ranker) deployed on [Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index) + Intel Sapphire Rapids CPU.
This Space is based on the optimizations demonstrated in the blog [CPU Optimized Embeddings with π€ Optimum Intel and fastRAG](https://huggingface.co/blog/intel-fast-embedding)
""",
).launch()
|