Spaces:
Runtime error
Runtime error
Commit
β’
a8236f5
1
Parent(s):
bb01ced
Update app.py
Browse files
app.py
CHANGED
@@ -7,17 +7,28 @@ from haystack.document_stores.base import BaseDocumentStore
|
|
7 |
from haystack.schema import Document
|
8 |
|
9 |
from typing import Optional, List
|
|
|
|
|
|
|
10 |
from time import perf_counter
|
11 |
import gradio as gr
|
12 |
import numpy as np
|
13 |
import requests
|
14 |
import os
|
15 |
|
|
|
16 |
RETRIEVER_URL = os.getenv("RETRIEVER_URL")
|
17 |
RANKER_URL = os.getenv("RANKER_URL")
|
18 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def post(url, payload):
|
23 |
response = requests.post(
|
@@ -128,16 +139,7 @@ class Ranker(BaseRanker):
|
|
128 |
|
129 |
TOP_K = 2
|
130 |
BATCH_SIZE = 16
|
131 |
-
|
132 |
-
"There is a blue house on Oxford Street.",
|
133 |
-
"Paris is the capital of France.",
|
134 |
-
"The Eiffel Tower is in Paris.",
|
135 |
-
"The Louvre is in Paris.",
|
136 |
-
"London is the capital of England.",
|
137 |
-
"Cairo is the capital of Egypt.",
|
138 |
-
"The pyramids are in Egypt.",
|
139 |
-
"The Sphinx is in Egypt.",
|
140 |
-
]
|
141 |
|
142 |
if (
|
143 |
os.path.exists("/data/faiss_document_store.db")
|
@@ -148,7 +150,6 @@ if (
|
|
148 |
retriever = Retriever(
|
149 |
document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
|
150 |
)
|
151 |
-
document_store.update_embeddings(retriever=retriever)
|
152 |
document_store.save(index_path="/data/faiss_index")
|
153 |
else:
|
154 |
try:
|
@@ -163,12 +164,9 @@ else:
|
|
163 |
return_embedding=True,
|
164 |
embedding_dim=384,
|
165 |
)
|
166 |
-
|
167 |
-
|
168 |
-
)
|
169 |
-
retriever = Retriever(
|
170 |
-
document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
|
171 |
-
)
|
172 |
document_store.update_embeddings(retriever=retriever)
|
173 |
document_store.save(index_path="/data/faiss_index")
|
174 |
|
@@ -180,20 +178,66 @@ pipe.add_node(component=ranker, name="Ranker", inputs=["Retriever"])
|
|
180 |
|
181 |
|
182 |
def run(query: str) -> dict:
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
gr.Interface(
|
192 |
fn=run,
|
193 |
-
inputs=
|
194 |
-
outputs=
|
195 |
title="End-to-End Retrieval & Ranking",
|
196 |
-
examples=
|
197 |
-
description="A pipeline for retrieving and ranking
|
198 |
-
"from
|
|
|
|
|
199 |
).launch()
|
|
|
7 |
from haystack.schema import Document
|
8 |
|
9 |
from typing import Optional, List
|
10 |
+
|
11 |
+
from huggingface_hub import get_inference_endpoint
|
12 |
+
from datasets import load_dataset
|
13 |
from time import perf_counter
|
14 |
import gradio as gr
|
15 |
import numpy as np
|
16 |
import requests
|
17 |
import os
|
18 |
|
19 |
+
|
20 |
RETRIEVER_URL = os.getenv("RETRIEVER_URL")
|
21 |
RANKER_URL = os.getenv("RANKER_URL")
|
22 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
23 |
|
24 |
|
25 |
+
RETRIEVER_IE = get_inference_endpoint(
|
26 |
+
"fastrag-retriever", namespace="optimum-intel", token=HF_TOKEN
|
27 |
+
)
|
28 |
+
RANKER_IE = get_inference_endpoint(
|
29 |
+
"fastrag-ranker", namespace="optimum-intel", token=HF_TOKEN
|
30 |
+
)
|
31 |
+
|
32 |
|
33 |
def post(url, payload):
|
34 |
response = requests.post(
|
|
|
139 |
|
140 |
TOP_K = 2
|
141 |
BATCH_SIZE = 16
|
142 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
if (
|
145 |
os.path.exists("/data/faiss_document_store.db")
|
|
|
150 |
retriever = Retriever(
|
151 |
document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
|
152 |
)
|
|
|
153 |
document_store.save(index_path="/data/faiss_index")
|
154 |
else:
|
155 |
try:
|
|
|
164 |
return_embedding=True,
|
165 |
embedding_dim=384,
|
166 |
)
|
167 |
+
DATASET = load_dataset("bilgeyucel/seven-wonders", split="train")
|
168 |
+
document_store.write_documents(DATASET)
|
169 |
+
retriever = Retriever(document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE)
|
|
|
|
|
|
|
170 |
document_store.update_embeddings(retriever=retriever)
|
171 |
document_store.save(index_path="/data/faiss_index")
|
172 |
|
|
|
178 |
|
179 |
|
180 |
def run(query: str) -> dict:
|
181 |
+
if RETRIEVER_IE.status != "running":
|
182 |
+
RETRIEVER_IE.resume()
|
183 |
+
raise gr.Error(
|
184 |
+
"Retriever Inference Endpoint is not running. "
|
185 |
+
"Sent a request to resume it. Please try again in a few minutes."
|
186 |
+
)
|
187 |
+
|
188 |
+
if RANKER_IE.status != "running":
|
189 |
+
RANKER_IE.resume()
|
190 |
+
raise gr.Error(
|
191 |
+
"Ranker Inference Endpoint is not running. "
|
192 |
+
"Sent a request to resume it. Please try again in a few minutes."
|
193 |
+
)
|
194 |
+
|
195 |
+
pipe_output = pipe.run(query=query)
|
196 |
+
|
197 |
+
output = f"""
|
198 |
+
<h2>Query</h2>
|
199 |
+
<p>{query}</p>
|
200 |
+
<h2>Top {TOP_K} Documents</h2>
|
201 |
+
"""
|
202 |
+
|
203 |
+
for i, doc in enumerate(pipe_output["documents"]):
|
204 |
+
output += f"""
|
205 |
+
<h3>Document {i + 1}</h3>
|
206 |
+
<p><strong>ID:</strong> {doc.id}</p>
|
207 |
+
<p><strong>Score:</strong> {doc.score}</p>
|
208 |
+
<p><strong>Content:</strong> {doc.content}</p>
|
209 |
+
"""
|
210 |
+
|
211 |
+
return output
|
212 |
+
|
213 |
+
|
214 |
+
examples = [
|
215 |
+
"Where is Gardens of Babylon?",
|
216 |
+
"Why did people build Great Pyramid of Giza?",
|
217 |
+
"What does Rhodes Statue look like?",
|
218 |
+
"Why did people visit the Temple of Artemis?",
|
219 |
+
"What is the importance of Colossus of Rhodes?",
|
220 |
+
"What happened to the Tomb of Mausolus?",
|
221 |
+
"How did Colossus of Rhodes collapse?",
|
222 |
+
]
|
223 |
|
224 |
|
225 |
+
input_text = gr.components.Textbox(
|
226 |
+
label="Query",
|
227 |
+
placeholder="Enter a query",
|
228 |
+
value=examples[0],
|
229 |
+
lines=3,
|
230 |
+
)
|
231 |
+
output_html = gr.components.HTML(label="Results")
|
232 |
|
233 |
gr.Interface(
|
234 |
fn=run,
|
235 |
+
inputs=input_text,
|
236 |
+
outputs=output_html,
|
237 |
title="End-to-End Retrieval & Ranking",
|
238 |
+
examples=examples,
|
239 |
+
description="A [haystack](https://haystack.deepset.ai/) pipeline for retrieving and ranking "
|
240 |
+
"documents from the [seven-wonders dataset](bilgeyucel/seven-wonders) based on a query, "
|
241 |
+
"using a FAISS database as a document store (kept in the space's persistent storage) "
|
242 |
+
"and two [Inference Endpoints for the Retriever and Ranker](https://huggingface.co/collections/optimum-intel/fast-rag-inference-endpoints-6641c6cbb98ddf3fe49c7728).",
|
243 |
).launch()
|