Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,962 Bytes
2caf84c 0e0ee20 c410887 4694933 c410887 e300c6e 2caf84c 7039ded 607d766 e2c1d93 fd01f63 349bdb0 99c00c1 1590686 c410887 af86047 54a62f5 4694933 54a62f5 349bdb0 2b5b4f4 c410887 349bdb0 0e0ee20 ef3fbda d3d700c ef3fbda c724573 54a62f5 c49fe58 ef3fbda 54a62f5 c49fe58 54a62f5 4f5b1e9 c49fe58 54a62f5 4f5b1e9 1590686 c59400c c724573 e2c1d93 4f5b1e9 e2c1d93 fd01f63 c410887 fd01f63 c410887 fd01f63 c410887 fd01f63 c410887 fd01f63 c410887 fd01f63 1d145af 832cf9f 1816d2d 5a4874e 1816d2d 1d145af 11166a4 5a4874e 1d145af 2657980 1d145af 89cc8a4 5a4874e 1d145af 1816d2d 832cf9f 6c6858a 89cc8a4 1816d2d 832cf9f 6c6858a 89cc8a4 1d145af 1816d2d 832cf9f 1816d2d 11166a4 1816d2d 11166a4 1d145af 5a4874e 0b85527 5a4874e 2657980 5a4874e 89cc8a4 5a4874e 2c6e805 832cf9f e3c44d1 5a4874e e3c44d1 5a4874e e3c44d1 5a4874e e3c44d1 5a4874e e3c44d1 5a4874e de2d073 e3c44d1 5a4874e e3c44d1 de2d073 0e0ee20 832cf9f c410887 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f 5a4874e 832cf9f c410887 e306774 4f5b1e9 c410887 e306774 fc0daea e306774 c410887 e306774 c410887 e306774 4f5b1e9 1d145af 2b5b4f4 de2d073 6141d0e de2d073 6141d0e e306774 6141d0e de2d073 6141d0e de2d073 6141d0e de2d073 6141d0e de2d073 6141d0e de2d073 6141d0e e306774 2b5b4f4 7feb9be 193a629 7feb9be 193a629 1d145af 2b5b4f4 7feb9be c410887 a08da6d e306774 4f5b1e9 e306774 99fe006 e306774 99fe006 e306774 4f5b1e9 99fe006 e306774 4f5b1e9 e306774 4f5b1e9 e306774 2600319 7feb9be 8532f69 2600319 c410887 86c1f58 832cf9f 1816d2d 86c1f58 c410887 86c1f58 1d145af 86c1f58 c410887 86c1f58 c410887 86c1f58 c410887 86c1f58 1d145af 28c0116 97ca72b 1d145af 97ca72b 1d145af 97ca72b 1d145af 86c1f58 1d145af 86c1f58 c410887 86c1f58 c410887 86c1f58 c410887 86c1f58 c410887 86c1f58 c410887 86c1f58 c410887 86c1f58 c410887 b052c2b 02732bb b052c2b c410887 b052c2b c410887 5a4874e c410887 b052c2b c410887 5a4874e b052c2b c410887 b052c2b c410887 b052c2b c410887 b052c2b c410887 b052c2b c410887 b052c2b c410887 193a629 86c1f58 1d145af 02732bb 2b5b4f4 7feb9be 86c1f58 02732bb 7feb9be 02732bb ecaeb7b 882ad89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
import requests
import pandas as pd
from transformers import pipeline
from gradio_imageslider import ImageSlider
import numpy as np
import warnings
huggingface_token = os.getenv("HF_TOKEN")
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
#Load prompts for randomization
df = pd.read_csv('prompts.csv', header=None)
prompt_values = df.values.flatten()
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# 공통 FLUX 모델 로드
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
# LoRA를 위한 설정
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
# Image-to-Image 파이프라인 설정
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
base_model,
vae=good_vae,
transformer=pipe.transformer,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
text_encoder_2=pipe.text_encoder_2,
tokenizer_2=pipe.tokenizer_2,
torch_dtype=dtype
).to(device)
MAX_SEED = 2**32 - 1
MAX_PIXEL_BUDGET = 1024 * 1024
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def download_file(url, directory=None):
if directory is None:
directory = os.getcwd() # Use current working directory if not specified
# Get the filename from the URL
filename = url.split('/')[-1]
# Full path for the downloaded file
filepath = os.path.join(directory, filename)
# Download the file
response = requests.get(url)
response.raise_for_status() # Raise an exception for bad status codes
# Write the content to the file
with open(filepath, 'wb') as file:
file.write(response.content)
return filepath
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
selected_index = evt.index
selected_indices = selected_indices or []
if selected_index in selected_indices:
selected_indices.remove(selected_index)
else:
if len(selected_indices) < 3:
selected_indices.append(selected_index)
else:
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
return gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update()
selected_info_1 = "Select LoRA 1"
selected_info_2 = "Select LoRA 2"
selected_info_3 = "Select LoRA 3"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 1.15
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
if len(selected_indices) >= 1:
lora1 = loras_state[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = loras_state[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
lora_image_2 = lora2['image']
if len(selected_indices) >= 3:
lora3 = loras_state[selected_indices[2]]
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
lora_image_3 = lora3['image']
if selected_indices:
last_selected_lora = loras_state[selected_indices[-1]]
new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
else:
new_placeholder = "Type a prompt after selecting a LoRA"
return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3
def remove_lora(selected_indices, loras_state, index_to_remove):
if len(selected_indices) > index_to_remove:
selected_indices.pop(index_to_remove)
selected_info_1 = "Select LoRA 1"
selected_info_2 = "Select LoRA 2"
selected_info_3 = "Select LoRA 3"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 1.15
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
for i, idx in enumerate(selected_indices):
lora = loras_state[idx]
if i == 0:
selected_info_1 = f"### LoRA 1 Selected: [{lora['title']}]({lora['repo']}) ✨"
lora_image_1 = lora['image']
elif i == 1:
selected_info_2 = f"### LoRA 2 Selected: [{lora['title']}]({lora['repo']}) ✨"
lora_image_2 = lora['image']
elif i == 2:
selected_info_3 = f"### LoRA 3 Selected: [{lora['title']}]({lora['repo']}) ✨"
lora_image_3 = lora['image']
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3
def remove_lora_1(selected_indices, loras_state):
return remove_lora(selected_indices, loras_state, 0)
def remove_lora_2(selected_indices, loras_state):
return remove_lora(selected_indices, loras_state, 1)
def remove_lora_3(selected_indices, loras_state):
return remove_lora(selected_indices, loras_state, 2)
def randomize_loras(selected_indices, loras_state):
try:
if len(loras_state) < 3:
raise gr.Error("Not enough LoRAs to randomize.")
selected_indices = random.sample(range(len(loras_state)), 3)
lora1 = loras_state[selected_indices[0]]
lora2 = loras_state[selected_indices[1]]
lora3 = loras_state[selected_indices[2]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 1.15
lora_image_1 = lora1.get('image', 'path/to/default/image.png')
lora_image_2 = lora2.get('image', 'path/to/default/image.png')
lora_image_3 = lora3.get('image', 'path/to/default/image.png')
random_prompt = random.choice(prompt_values)
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, random_prompt
except Exception as e:
print(f"Error in randomize_loras: {str(e)}")
return "Error", "Error", "Error", [], 1.15, 1.15, 1.15, 'path/to/default/image.png', 'path/to/default/image.png', 'path/to/default/image.png', ""
def add_custom_lora(custom_lora, selected_indices, current_loras):
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None)
if existing_item_index is None:
if repo.endswith(".safetensors") and repo.startswith("http"):
repo = download_file(repo)
new_item = {
"image": image if image else "/home/user/app/custom.png",
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(f"New LoRA: {new_item}")
existing_item_index = len(current_loras)
current_loras.append(new_item)
# Update gallery
gallery_items = [(item["image"], item["title"]) for item in current_loras]
# Update selected_indices if there's room
if len(selected_indices) < 3:
selected_indices.append(existing_item_index)
else:
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
# Update selected_info and images
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
selected_info_3 = "Select a LoRA 3"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 1.15
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
if len(selected_indices) >= 1:
lora1 = current_loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨"
lora_image_1 = lora1['image'] if lora1['image'] else None
if len(selected_indices) >= 2:
lora2 = current_loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨"
lora_image_2 = lora2['image'] if lora2['image'] else None
if len(selected_indices) >= 3:
lora3 = current_loras[selected_indices[2]]
selected_info_3 = f"### LoRA 3 Selected: {lora3['title']} ✨"
lora_image_3 = lora3['image'] if lora3['image'] else None
print("Finished adding custom LoRA")
return (
current_loras,
gr.update(value=gallery_items),
selected_info_1,
selected_info_2,
selected_info_3,
selected_indices,
lora_scale_1,
lora_scale_2,
lora_scale_3,
lora_image_1,
lora_image_2,
lora_image_3
)
except Exception as e:
print(e)
gr.Warning(str(e))
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
else:
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
def remove_custom_lora(selected_indices, current_loras):
if current_loras:
custom_lora_repo = current_loras[-1]['repo']
# Remove from loras list
current_loras = current_loras[:-1]
# Remove from selected_indices if selected
custom_lora_index = len(current_loras)
if custom_lora_index in selected_indices:
selected_indices.remove(custom_lora_index)
# Update gallery
gallery_items = [(item["image"], item["title"]) for item in current_loras]
# Update selected_info and images
selected_info_1 = "Select a LoRA 1"
selected_info_2 = "Select a LoRA 2"
selected_info_3 = "Select a LoRA 3"
lora_scale_1 = 1.15
lora_scale_2 = 1.15
lora_scale_3 = 1.15
lora_image_1 = None
lora_image_2 = None
lora_image_3 = None
if len(selected_indices) >= 1:
lora1 = current_loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
lora_image_1 = lora1['image']
if len(selected_indices) >= 2:
lora2 = current_loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
lora_image_2 = lora2['image']
if len(selected_indices) >= 3:
lora3 = current_loras[selected_indices[2]]
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨"
lora_image_3 = lora3['image']
return (
current_loras,
gr.update(value=gallery_items),
selected_info_1,
selected_info_2,
selected_info_3,
selected_indices,
lora_scale_1,
lora_scale_2,
lora_scale_3,
lora_image_1,
lora_image_2,
lora_image_3
)
@spaces.GPU(duration=75)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
print("Generating image...")
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": 1.0},
output_type="pil",
good_vae=good_vae,
):
yield img
@spaces.GPU(duration=75)
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
pipe_i2i.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
image_input = load_image(image_input_path)
final_image = pipe_i2i(
prompt=prompt_mash,
image=image_input,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": 1.0},
output_type="pil",
).images[0]
return final_image
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
try:
# 한글 감지 및 번역 (이 부분은 그대로 유지)
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
translated = translator(prompt, max_length=512)[0]['translation_text']
print(f"Original prompt: {prompt}")
print(f"Translated prompt: {translated}")
prompt = translated
if not selected_indices:
raise gr.Error("You must select at least one LoRA before proceeding.")
selected_loras = [loras_state[idx] for idx in selected_indices]
# Build the prompt with trigger words (이 부분은 그대로 유지)
prepends = []
appends = []
for lora in selected_loras:
trigger_word = lora.get('trigger_word', '')
if trigger_word:
if lora.get("trigger_position") == "prepend":
prepends.append(trigger_word)
else:
appends.append(trigger_word)
prompt_mash = " ".join(prepends + [prompt] + appends)
print("Prompt Mash: ", prompt_mash)
# Unload previous LoRA weights
with calculateDuration("Unloading LoRA"):
pipe.unload_lora_weights()
pipe_i2i.unload_lora_weights()
print(f"Active adapters before loading: {pipe.get_active_adapters()}")
# Load LoRA weights with respective scales
lora_names = []
lora_weights = []
with calculateDuration("Loading LoRA weights"):
for idx, lora in enumerate(selected_loras):
try:
lora_name = f"lora_{idx}"
lora_path = lora['repo']
weight_name = lora.get("weights")
print(f"Loading LoRA {lora_name} from {lora_path}")
if image_input is not None:
if weight_name:
pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=lora_name)
else:
pipe_i2i.load_lora_weights(lora_path, adapter_name=lora_name)
else:
if weight_name:
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=lora_name)
else:
pipe.load_lora_weights(lora_path, adapter_name=lora_name)
lora_names.append(lora_name)
lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2 if idx == 1 else lora_scale_3)
except Exception as e:
print(f"Failed to load LoRA {lora_name}: {str(e)}")
print("Loaded LoRAs:", lora_names)
print("Adapter weights:", lora_weights)
if lora_names:
if image_input is not None:
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
else:
pipe.set_adapters(lora_names, adapter_weights=lora_weights)
else:
print("No LoRAs were successfully loaded.")
return None, seed, gr.update(visible=False)
print(f"Active adapters after loading: {pipe.get_active_adapters()}")
# 여기서부터 이미지 생성 로직 (이 부분은 그대로 유지)
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if image_input is not None:
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
else:
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
final_image = None
step_counter = 0
for image in image_generator:
step_counter += 1
final_image = image
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True)
if final_image is None:
raise Exception("Failed to generate image")
return final_image, seed, gr.update(visible=False)
except Exception as e:
print(f"Error in run_lora: {str(e)}")
return None, seed, gr.update(visible=False)
run_lora.zerogpu = True
def get_huggingface_safetensors(link):
split_link = link.split("/")
if len(split_link) == 2:
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(f"Base model: {base_model}")
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
raise Exception("Not a FLUX LoRA!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
safetensors_name = None
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if file.endswith(".safetensors"):
safetensors_name = file.split("/")[-1]
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
except Exception as e:
print(e)
raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA")
if not safetensors_name:
raise gr.Error("No *.safetensors file found in the repository")
return split_link[1], link, safetensors_name, trigger_word, image_url
else:
raise gr.Error("Invalid Hugging Face repository link")
def check_custom_model(link):
if link.endswith(".safetensors"):
# Treat as direct link to the LoRA weights
title = os.path.basename(link)
repo = link
path = None # No specific weight name
trigger_word = ""
image_url = None
return title, repo, path, trigger_word, image_url
elif link.startswith("https://"):
if "huggingface.co" in link:
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
raise Exception("Unsupported URL")
else:
# Assume it's a Hugging Face model path
return get_huggingface_safetensors(link)
def update_history(new_image, history):
"""Updates the history gallery with the new image."""
if history is None:
history = []
if new_image is not None:
history.insert(0, new_image)
return history
css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.25em}
#gallery .grid-wrap{height: 5vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.custom_lora_card{margin-bottom: 1em}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
#component-8, .button_total{height: 100%; align-self: stretch;}
#loaded_loras [data-testid="block-info"]{font-size:80%}
#custom_lora_structure{background: var(--block-background-fill)}
#custom_lora_btn{margin-top: auto;margin-bottom: 11px}
#random_btn{font-size: 300%}
#component-11{align-self: stretch;}
footer {visibility: hidden;}
'''
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
loras_state = gr.State(loras)
selected_indices = gr.State([])
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1):
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
with gr.Row(elem_id="loaded_loras"):
with gr.Column(scale=1, min_width=25):
randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_1 = gr.Markdown("Select a LoRA 1")
with gr.Column(scale=5, min_width=50):
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
with gr.Row():
remove_button_1 = gr.Button("Remove", size="sm")
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_2 = gr.Markdown("Select a LoRA 2")
with gr.Column(scale=5, min_width=50):
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
with gr.Row():
remove_button_2 = gr.Button("Remove", size="sm")
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=0, min_width=50):
lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
with gr.Column(scale=3, min_width=100):
selected_info_3 = gr.Markdown("Select a LoRA 3")
with gr.Column(scale=5, min_width=50):
lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
with gr.Row():
remove_button_3 = gr.Button("Remove", size="sm")
with gr.Row():
with gr.Column():
with gr.Group():
with gr.Row(elem_id="custom_lora_structure"):
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="ginipick/flux-lora-eric-cat", scale=3, min_width=150)
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="Or pick from the LoRA Explorer gallery",
allow_preview=False,
columns=4,
elem_id="gallery"
)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress", visible=False)
result = gr.Image(label="Generated Image", interactive=False)
with gr.Accordion("History", open=False):
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
input_image = gr.Image(label="Input image", type="filepath")
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
gallery.select(
update_selection,
inputs=[selected_indices, loras_state, width, height],
outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3]
)
remove_button_1.click(
remove_lora_1,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
)
remove_button_2.click(
remove_lora_2,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
)
remove_button_3.click(
remove_lora_3,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
)
randomize_button.click(
randomize_loras,
inputs=[selected_indices, loras_state],
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, prompt]
)
add_custom_lora_button.click(
add_custom_lora,
inputs=[custom_lora, selected_indices, loras_state],
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
)
remove_custom_lora_button.click(
remove_custom_lora,
inputs=[selected_indices, loras_state],
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, width, height, loras_state],
outputs=[result, seed, progress_bar]
).then(
fn=lambda x, history: update_history(x, history) if x is not None else history,
inputs=[result, history_gallery],
outputs=history_gallery,
)
if __name__ == "__main__":
app.queue(max_size=20)
app.launch(debug=True) |