Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,7 @@ import logging
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import spaces
|
8 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
|
9 |
-
from diffusers.pipelines import FluxControlNetPipeline
|
10 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
11 |
from diffusers.utils import load_image
|
12 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
@@ -21,7 +20,7 @@ import numpy as np
|
|
21 |
import warnings
|
22 |
|
23 |
|
24 |
-
huggingface_token = os.getenv("
|
25 |
|
26 |
|
27 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
|
@@ -61,23 +60,6 @@ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
61 |
torch_dtype=dtype
|
62 |
).to(device)
|
63 |
|
64 |
-
# Upscale을 위한 ControlNet 설정
|
65 |
-
controlnet = FluxControlNetModel.from_pretrained(
|
66 |
-
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
67 |
-
).to(device)
|
68 |
-
|
69 |
-
# Upscale 파이프라인 설정 (기존 pipe 재사용)
|
70 |
-
pipe_upscale = FluxControlNetPipeline(
|
71 |
-
vae=pipe.vae,
|
72 |
-
text_encoder=pipe.text_encoder,
|
73 |
-
text_encoder_2=pipe.text_encoder_2,
|
74 |
-
tokenizer=pipe.tokenizer,
|
75 |
-
tokenizer_2=pipe.tokenizer_2,
|
76 |
-
transformer=pipe.transformer,
|
77 |
-
scheduler=pipe.scheduler,
|
78 |
-
controlnet=controlnet
|
79 |
-
).to(device)
|
80 |
-
|
81 |
MAX_SEED = 2**32 - 1
|
82 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
83 |
|
@@ -556,109 +538,6 @@ css = '''
|
|
556 |
footer {visibility: hidden;}
|
557 |
'''
|
558 |
|
559 |
-
# 업스케일 관련 함수 추가
|
560 |
-
def process_input(input_image, upscale_factor, **kwargs):
|
561 |
-
w, h = input_image.size
|
562 |
-
w_original, h_original = w, h
|
563 |
-
aspect_ratio = w / h
|
564 |
-
|
565 |
-
was_resized = False
|
566 |
-
|
567 |
-
max_size = int(np.sqrt(MAX_PIXEL_BUDGET / (upscale_factor ** 2)))
|
568 |
-
if w > max_size or h > max_size:
|
569 |
-
if w > h:
|
570 |
-
w_new = max_size
|
571 |
-
h_new = int(w_new / aspect_ratio)
|
572 |
-
else:
|
573 |
-
h_new = max_size
|
574 |
-
w_new = int(h_new * aspect_ratio)
|
575 |
-
|
576 |
-
input_image = input_image.resize((w_new, h_new), Image.LANCZOS)
|
577 |
-
was_resized = True
|
578 |
-
gr.Info(f"Input image resized to {w_new}x{h_new} to fit within pixel budget after upscaling.")
|
579 |
-
|
580 |
-
# resize to multiple of 8
|
581 |
-
w, h = input_image.size
|
582 |
-
w = w - w % 8
|
583 |
-
h = h - h % 8
|
584 |
-
|
585 |
-
return input_image.resize((w, h)), w_original, h_original, was_resized
|
586 |
-
|
587 |
-
from PIL import Image
|
588 |
-
import numpy as np
|
589 |
-
|
590 |
-
@spaces.GPU
|
591 |
-
def infer_upscale(
|
592 |
-
seed,
|
593 |
-
randomize_seed,
|
594 |
-
input_image,
|
595 |
-
num_inference_steps,
|
596 |
-
upscale_factor,
|
597 |
-
controlnet_conditioning_scale,
|
598 |
-
progress=gr.Progress(track_tqdm=True),
|
599 |
-
):
|
600 |
-
if input_image is None:
|
601 |
-
return None, seed, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=True, value="Please upload an image for upscaling.")
|
602 |
-
|
603 |
-
try:
|
604 |
-
if randomize_seed:
|
605 |
-
seed = random.randint(0, MAX_SEED)
|
606 |
-
|
607 |
-
input_image, w_original, h_original, was_resized = process_input(input_image, upscale_factor)
|
608 |
-
|
609 |
-
# rescale with upscale factor
|
610 |
-
w, h = input_image.size
|
611 |
-
control_image = input_image.resize((w * upscale_factor, h * upscale_factor), Image.LANCZOS)
|
612 |
-
|
613 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
614 |
-
|
615 |
-
gr.Info("Upscaling image...")
|
616 |
-
# 모든 텐서를 동일한 디바이스로 이동
|
617 |
-
pipe_upscale.to(device)
|
618 |
-
|
619 |
-
# Ensure the image is in RGB format
|
620 |
-
if control_image.mode != 'RGB':
|
621 |
-
control_image = control_image.convert('RGB')
|
622 |
-
|
623 |
-
# Convert to tensor and add batch dimension
|
624 |
-
control_image = torch.from_numpy(np.array(control_image)).permute(2, 0, 1).float().unsqueeze(0).to(device) / 255.0
|
625 |
-
|
626 |
-
with torch.no_grad():
|
627 |
-
image = pipe_upscale(
|
628 |
-
prompt="",
|
629 |
-
control_image=control_image,
|
630 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
631 |
-
num_inference_steps=num_inference_steps,
|
632 |
-
guidance_scale=3.5,
|
633 |
-
generator=generator,
|
634 |
-
).images[0]
|
635 |
-
|
636 |
-
# Convert the image back to PIL Image
|
637 |
-
if isinstance(image, torch.Tensor):
|
638 |
-
image = image.cpu().permute(1, 2, 0).numpy()
|
639 |
-
|
640 |
-
# Ensure the image data is in the correct range
|
641 |
-
image = np.clip(image * 255, 0, 255).astype(np.uint8)
|
642 |
-
image = Image.fromarray(image)
|
643 |
-
|
644 |
-
if was_resized:
|
645 |
-
gr.Info(
|
646 |
-
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
|
647 |
-
)
|
648 |
-
image = image.resize((w_original * upscale_factor, h_original * upscale_factor), Image.LANCZOS)
|
649 |
-
|
650 |
-
return image, seed, num_inference_steps, upscale_factor, controlnet_conditioning_scale, gr.update(), gr.update(visible=False)
|
651 |
-
except Exception as e:
|
652 |
-
print(f"Error in infer_upscale: {str(e)}")
|
653 |
-
import traceback
|
654 |
-
traceback.print_exc()
|
655 |
-
return None, seed, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=True, value=f"Error: {str(e)}")
|
656 |
-
|
657 |
-
def check_upscale_input(input_image, *args):
|
658 |
-
if input_image is None:
|
659 |
-
return gr.update(interactive=False), *args, gr.update(visible=True, value="Please upload an image for upscaling.")
|
660 |
-
return gr.update(interactive=True), *args, gr.update(visible=False)
|
661 |
-
|
662 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
|
663 |
loras_state = gr.State(loras)
|
664 |
selected_indices = gr.State([])
|
@@ -742,49 +621,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
742 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
743 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
744 |
|
745 |
-
# 업스케일 관련 UI 추가
|
746 |
-
with gr.Row():
|
747 |
-
upscale_button = gr.Button("Upscale", interactive=False)
|
748 |
-
|
749 |
-
with gr.Row():
|
750 |
-
with gr.Column(scale=4):
|
751 |
-
upscale_input = gr.Image(label="Input Image for Upscaling", type="pil")
|
752 |
-
with gr.Column(scale=1):
|
753 |
-
upscale_steps = gr.Slider(
|
754 |
-
label="Number of Inference Steps for Upscaling",
|
755 |
-
minimum=8,
|
756 |
-
maximum=50,
|
757 |
-
step=1,
|
758 |
-
value=28,
|
759 |
-
)
|
760 |
-
upscale_factor = gr.Slider(
|
761 |
-
label="Upscale Factor",
|
762 |
-
minimum=1,
|
763 |
-
maximum=4,
|
764 |
-
step=1,
|
765 |
-
value=4,
|
766 |
-
)
|
767 |
-
controlnet_conditioning_scale = gr.Slider(
|
768 |
-
label="Controlnet Conditioning Scale",
|
769 |
-
minimum=0.1,
|
770 |
-
maximum=1.0,
|
771 |
-
step=0.05,
|
772 |
-
value=0.5, # 기본값을 0.5로 낮춤
|
773 |
-
)
|
774 |
-
upscale_seed = gr.Slider(
|
775 |
-
label="Seed for Upscaling",
|
776 |
-
minimum=0,
|
777 |
-
maximum=MAX_SEED,
|
778 |
-
step=1,
|
779 |
-
value=42,
|
780 |
-
)
|
781 |
-
upscale_randomize_seed = gr.Checkbox(label="Randomize seed for Upscaling", value=True)
|
782 |
-
upscale_error = gr.Markdown(visible=False, value="Please provide an input image for upscaling.")
|
783 |
-
|
784 |
-
with gr.Row():
|
785 |
-
upscale_result = gr.Image(label="Upscaled Image", type="pil")
|
786 |
-
upscale_seed_output = gr.Number(label="Seed Used", precision=0)
|
787 |
-
|
788 |
gallery.select(
|
789 |
update_selection,
|
790 |
inputs=[selected_indices, loras_state, width, height],
|
@@ -809,8 +645,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
809 |
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
|
810 |
)
|
811 |
|
812 |
-
|
813 |
-
|
814 |
randomize_button.click(
|
815 |
randomize_loras,
|
816 |
inputs=[selected_indices, loras_state],
|
@@ -840,46 +674,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
840 |
outputs=history_gallery,
|
841 |
)
|
842 |
|
843 |
-
upscale_input.upload(
|
844 |
-
lambda x: gr.update(interactive=x is not None),
|
845 |
-
inputs=[upscale_input],
|
846 |
-
outputs=[upscale_button]
|
847 |
-
)
|
848 |
-
|
849 |
-
upscale_error = gr.Markdown(visible=False, value="")
|
850 |
-
|
851 |
-
upscale_button.click(
|
852 |
-
infer_upscale,
|
853 |
-
inputs=[
|
854 |
-
upscale_seed,
|
855 |
-
upscale_randomize_seed,
|
856 |
-
upscale_input,
|
857 |
-
upscale_steps,
|
858 |
-
upscale_factor,
|
859 |
-
controlnet_conditioning_scale,
|
860 |
-
],
|
861 |
-
outputs=[
|
862 |
-
upscale_result,
|
863 |
-
upscale_seed_output,
|
864 |
-
upscale_steps,
|
865 |
-
upscale_factor,
|
866 |
-
controlnet_conditioning_scale,
|
867 |
-
upscale_randomize_seed,
|
868 |
-
upscale_error
|
869 |
-
],
|
870 |
-
).then(
|
871 |
-
infer_upscale,
|
872 |
-
inputs=[
|
873 |
-
upscale_seed,
|
874 |
-
upscale_randomize_seed,
|
875 |
-
upscale_input,
|
876 |
-
upscale_steps,
|
877 |
-
upscale_factor,
|
878 |
-
controlnet_conditioning_scale,
|
879 |
-
],
|
880 |
-
outputs=[upscale_result, upscale_seed_output]
|
881 |
-
)
|
882 |
-
|
883 |
if __name__ == "__main__":
|
884 |
app.queue(max_size=20)
|
885 |
app.launch(debug=True)
|
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import spaces
|
8 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
|
|
|
9 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
10 |
from diffusers.utils import load_image
|
11 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
|
|
20 |
import warnings
|
21 |
|
22 |
|
23 |
+
huggingface_token = os.getenv("HF_TOKEN")
|
24 |
|
25 |
|
26 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
|
|
|
60 |
torch_dtype=dtype
|
61 |
).to(device)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
MAX_SEED = 2**32 - 1
|
64 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
65 |
|
|
|
538 |
footer {visibility: hidden;}
|
539 |
'''
|
540 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
541 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
|
542 |
loras_state = gr.State(loras)
|
543 |
selected_indices = gr.State([])
|
|
|
621 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
622 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
623 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
624 |
gallery.select(
|
625 |
update_selection,
|
626 |
inputs=[selected_indices, loras_state, width, height],
|
|
|
645 |
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
|
646 |
)
|
647 |
|
|
|
|
|
648 |
randomize_button.click(
|
649 |
randomize_loras,
|
650 |
inputs=[selected_indices, loras_state],
|
|
|
674 |
outputs=history_gallery,
|
675 |
)
|
676 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
677 |
if __name__ == "__main__":
|
678 |
app.queue(max_size=20)
|
679 |
app.launch(debug=True)
|