Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import time | |
import torch | |
import shutil | |
import argparse | |
import numpy as np | |
from tqdm import tqdm | |
from PIL import Image | |
from datasets import load_dataset | |
from accelerate import Accelerator | |
from diffusers.utils import load_image | |
from diffusers import ( | |
AutoencoderKL, | |
StableDiffusionXLControlNetPipeline, | |
ControlNetModel, | |
UNet2DConditionModel, | |
) | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
# Define the function to parse arguments | |
def parse_args(input_args=None): | |
parser = argparse.ArgumentParser(description="Simple example of a ControlNet evaluation script.") | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--pretrained_vae_model_name_or_path", | |
type=str, | |
default=None, | |
help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.", | |
) | |
parser.add_argument( | |
"--controlnet_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained controlnet model.", | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to output results.", | |
) | |
parser.add_argument( | |
"--dataset", | |
type=str, | |
default="nickpai/coco2017-colorization", | |
help="Dataset used" | |
) | |
parser.add_argument( | |
"--dataset_revision", | |
type=str, | |
default="caption-free", | |
choices=["main", "caption-free", "custom-caption"], | |
help="Revision option (main/caption-free/custom-caption)" | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument( | |
"--variant", | |
type=str, | |
default=None, | |
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--num_inference_steps", | |
type=int, | |
default=8, | |
help="1-step, 2-step, 4-step, or 8-step distilled models" | |
) | |
parser.add_argument( | |
"--repo", | |
type=str, | |
default="ByteDance/SDXL-Lightning", | |
required=True, | |
help="Repository from huggingface.co", | |
) | |
parser.add_argument( | |
"--ckpt", | |
type=str, | |
default="sdxl_lightning_4step_unet.safetensors", | |
required=True, | |
help="Available checkpoints from the repository", | |
) | |
parser.add_argument( | |
"--negative_prompt", | |
action="store_true", | |
help="The prompt or prompts not to guide the image generation", | |
) | |
if input_args is not None: | |
args = parser.parse_args(input_args) | |
else: | |
args = parser.parse_args() | |
return args | |
def apply_color(image, color_map): | |
# Convert input images to LAB color space | |
image_lab = image.convert('LAB') | |
color_map_lab = color_map.convert('LAB') | |
# Split LAB channels | |
l, a, b = image_lab.split() | |
_, a_map, b_map = color_map_lab.split() | |
# Merge LAB channels with color map | |
merged_lab = Image.merge('LAB', (l, a_map, b_map)) | |
# Convert merged LAB image back to RGB color space | |
result_rgb = merged_lab.convert('RGB') | |
return result_rgb | |
def main(args): | |
generator = torch.manual_seed(0) | |
# Path to the eval_results folder | |
eval_results_folder = os.path.join(args.output_dir, "results") | |
# Remove eval_results folder if it exists | |
if os.path.exists(eval_results_folder): | |
shutil.rmtree(eval_results_folder) | |
# Create directory for eval_results | |
os.makedirs(eval_results_folder) | |
# Create subfolders for compare and colorized images | |
compare_folder = os.path.join(eval_results_folder, "compare") | |
colorized_folder = os.path.join(eval_results_folder, "colorized") | |
os.makedirs(compare_folder) | |
os.makedirs(colorized_folder) | |
# Load the validation split of the colorization dataset | |
val_dataset = load_dataset(args.dataset, split="validation", revision=args.dataset_revision) | |
accelerator = Accelerator( | |
mixed_precision=args.mixed_precision, | |
) | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
vae_path = ( | |
args.pretrained_model_name_or_path | |
if args.pretrained_vae_model_name_or_path is None | |
else args.pretrained_vae_model_name_or_path | |
) | |
vae = AutoencoderKL.from_pretrained( | |
vae_path, | |
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, | |
revision=args.revision, | |
variant=args.variant, | |
) | |
unet = UNet2DConditionModel.from_config( | |
args.pretrained_model_name_or_path, | |
subfolder="unet", | |
revision=args.revision, | |
variant=args.variant, | |
) | |
unet.load_state_dict(load_file(hf_hub_download(args.repo, args.ckpt))) | |
# Move vae, unet and text_encoder to device and cast to weight_dtype | |
# The VAE is in float32 to avoid NaN losses. | |
if args.pretrained_vae_model_name_or_path is not None: | |
vae.to(accelerator.device, dtype=weight_dtype) | |
else: | |
vae.to(accelerator.device, dtype=torch.float32) | |
unet.to(accelerator.device, dtype=weight_dtype) | |
controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path, torch_dtype=weight_dtype) | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
vae=vae, | |
unet=unet, | |
controlnet=controlnet, | |
) | |
pipe.to(accelerator.device, dtype=weight_dtype) | |
# Prepare everything with our `accelerator`. | |
pipe, val_dataset = accelerator.prepare(pipe, val_dataset) | |
pipe.safety_checker = None | |
# Counter for processed images | |
processed_images = 0 | |
# Record start time | |
start_time = time.time() | |
# Iterate through the validation dataset | |
for example in tqdm(val_dataset, desc="Processing Images"): | |
image_path = example["file_name"] | |
prompt = [] | |
for caption in example["captions"]: | |
if isinstance(caption, str): | |
prompt.append(caption) | |
elif isinstance(caption, (list, np.ndarray)): | |
# take a random caption if there are multiple | |
prompt.append(caption[0]) | |
else: | |
raise ValueError( | |
f"Caption column `captions` should contain either strings or lists of strings." | |
) | |
negative_prompt = None | |
if args.negative_prompt: | |
negative_prompt = [ | |
"low quality, bad quality, low contrast, black and white, bw, monochrome, grainy, blurry, historical, restored, desaturate" | |
] | |
# Generate image | |
ground_truth_image = load_image(image_path).resize((512, 512)) | |
control_image = load_image(image_path).convert("L").convert("RGB").resize((512, 512)) | |
image = pipe(prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=args.num_inference_steps, | |
generator=generator, | |
image=control_image).images[0] | |
# Apply color mapping | |
image = apply_color(ground_truth_image, image) | |
# Concatenate images into a row | |
row_image = np.hstack((np.array(control_image), np.array(image), np.array(ground_truth_image))) | |
row_image = Image.fromarray(row_image) | |
# Save row image in the compare folder | |
compare_output_path = os.path.join(compare_folder, f"{image_path.split('/')[-1]}") | |
row_image.save(compare_output_path) | |
# Save colorized image in the colorized folder | |
colorized_output_path = os.path.join(colorized_folder, f"{image_path.split('/')[-1]}") | |
image.save(colorized_output_path) | |
# Increment processed images counter | |
processed_images += 1 | |
# Record end time | |
end_time = time.time() | |
# Calculate total time taken | |
total_time = end_time - start_time | |
# Calculate FPS | |
fps = processed_images / total_time | |
print("All images processed.") | |
print(f"Total time taken: {total_time:.2f} seconds") | |
print(f"FPS: {fps:.2f}") | |
# Entry point of the script | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) |