File size: 7,830 Bytes
0c194f3 20ed309 9233e8b 5c22f32 cbd8177 9233e8b cbd8177 0c194f3 9233e8b 0c194f3 9233e8b d1f7806 0c194f3 24d6e19 cbd8177 5c22f32 2be70e9 5c22f32 cbd8177 179f265 5c22f32 0c194f3 9233e8b 0c194f3 9233e8b 0c194f3 2be70e9 5c22f32 0c194f3 24d6e19 20ed309 986648a 5c22f32 9233e8b 20ed309 735dd1b 718b39d 735dd1b ec86576 20ed309 9233e8b 986648a 9233e8b 5c22f32 9233e8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import pandas as pd
import numpy as np
from typing import Tuple
from datasets import load_dataset, Features, Value
from about import results_repo_validation, results_repo_test
from about import METRICS, STANDARD_COLS
from loguru import logger
def make_user_clickable(name: str):
link =f'https://huggingface.co/{name}'
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{name}</a>'
def make_tag_clickable(tag: str):
if tag is None:
return "Not submitted"
return f'<a target="_blank" href="{tag}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">link</a>'
def fetch_dataset_df(download_raw=False): # Change download_raw to True for the final leaderboard
logger.info("Fetching latest results dataset from Hugging Face Hub...")
# Specify feature types to load results dataset
metric_features = {
f'mean_{m}': Value('float64') for m in METRICS
}
metric_features.update({
f'std_{m}': Value('float64') for m in METRICS
})
other_features = {
'user': Value('string'),
'Endpoint': Value('string'),
'submission_time': Value('string'),
'model_report': Value('string'),
'anonymous': Value('bool'),
'hf_username': Value('string')
}
feature_schema = Features(metric_features | other_features)
dset = load_dataset(results_repo_validation, # change to results_repo_test for test set
name='default',
split='train',
features=feature_schema,
download_mode="force_redownload")
full_df = dset.to_pandas()
expected_mean_cols = [f"mean_{col}" for col in METRICS]
expected_std_cols = [f"std_{col}" for col in METRICS]
expected_all_cols = STANDARD_COLS + expected_mean_cols + expected_std_cols
assert all(
col in full_df.columns for col in expected_all_cols
), f"Expected columns not found in {full_df.columns}. Missing columns: {set(expected_all_cols) - set(full_df.columns)}"
df = full_df.copy()
df = df[df["user"] != "test"].copy()
df["submission_time"] = pd.to_datetime(df["submission_time"], errors="coerce")
df = df.dropna(subset=["submission_time"])
# Get the most recent submission per user & endpoint
latest = (
df.sort_values("submission_time")
.drop_duplicates(subset=["Endpoint", "hf_username"], keep="last") #IMPORTANT: unique on HF username not display name
.sort_values(["Endpoint", "user"])
.reset_index(drop=True)
)
latest.rename(columns={"submission_time": "submission time"}, inplace=True)
# Also fetch raw dataset
metric_features = {
m: Value('float64') for m in METRICS
}
other_features.update({'Sample': Value("float32")})
feature_schema = Features(metric_features | other_features)
# We'll set download_raw for the live leaderboard, as it too long to load
latest_raw = None
if download_raw:
dset_raw = load_dataset(results_repo_validation, # change to results_repo_test for test set
name='raw',
split='train',
features=feature_schema,
download_mode="force_redownload")
raw_df = dset_raw.to_pandas()
df_raw = raw_df.copy()
df_raw["submission_time"] = pd.to_datetime(df_raw["submission_time"], errors="coerce")
df_raw = df_raw.dropna(subset=["submission_time"])
latest_raw = (
df_raw.sort_values("submission_time")
.drop_duplicates(subset=["Sample", "Endpoint", "hf_username"], keep="last")
.sort_values(["Sample","Endpoint", "user"])
.reset_index(drop=True)
)
return latest, latest_raw
def clip_and_log_transform(y: np.ndarray):
"""
Clip to a detection limit and transform to log10 scale.
Parameters
----------
y : np.ndarray
The array to be clipped and transformed.
"""
y = np.clip(y, a_min=0, a_max=None)
return np.log10(y + 1)
def bootstrap_sampling(size: int, n_samples: int) -> np.ndarray:
"""
Generate bootstrap samples for a given size and number of samples.
Parameters
----------
size : int
The size of the data.
n_samples : int
The number of samples to generate.
Returns
-------
np.ndarray
Returns a numpy array of the bootstrap samples.
"""
rng = np.random.default_rng(0)
return rng.choice(size, size=(n_samples, size), replace=True)
def metrics_per_ep(pred: np.ndarray,
true: np.ndarray
)->Tuple[float, float, float, float]:
"""Predict evaluation metrics for a single sample
Parameters
----------
pred : np.ndarray
Array with predictions
true : np.ndarray
Array with actual values
Returns
-------
Tuple[float, float, float, float]
Resulting metrics: (MAE, RAE, R2, Spearman R, Kendall's Tau)
"""
from scipy.stats import spearmanr, kendalltau
from sklearn.metrics import mean_absolute_error, r2_score
mae = mean_absolute_error(true, pred)
rae = mae / np.mean(np.abs(true - np.mean(true)))
if np.nanstd(true) == 0:
r2=np.nan
else:
r2 = r2_score(true, pred)
if np.nanstd(pred) < 0.0001:
spr = np.nan
ktau = np.nan
else:
spr = spearmanr(true, pred).statistic
ktau = kendalltau(true, pred).statistic
return mae, rae, r2, spr, ktau
def bootstrap_metrics(pred: np.ndarray,
true: np.ndarray,
endpoint: str,
n_bootstrap_samples=1000
)->pd.DataFrame:
"""Calculate bootstrap metrics given predicted and true values
Parameters
----------
pred : np.ndarray
Predicted endpoints
true : np.ndarray
Actual endpoint values
endpoint : str
String with endpoint
n_bootstrap_samples : int, optional
Size of bootstrapsample, by default 1000
Returns
-------
pd.DataFrame
Dataframe with estimated metric per bootstrap sample for the given endpoint
"""
cols = ["Sample", "Endpoint", "Metric", "Value"]
bootstrap_results = pd.DataFrame(columns=cols)
for i, indx in enumerate(
bootstrap_sampling(true.shape[0], n_bootstrap_samples)
):
mae, rae, r2, spr, ktau = metrics_per_ep(pred[indx], true[indx])
scores = pd.DataFrame(
[
[i, endpoint, "MAE", mae],
[i, endpoint, "RAE", rae],
[i, endpoint, "R2", r2],
[i, endpoint, "Spearman R", spr],
[i, endpoint, "Kendall's Tau", ktau]
],
columns=cols
)
bootstrap_results = pd.concat([bootstrap_results, scores])
return bootstrap_results
def map_metric_to_stats(df: pd.DataFrame, average=False) -> pd.DataFrame:
"""Map mean and std to 'mean +/- std' string for each metric
Parameters
----------
df : pd.DataFrame
Dataframe to modify
average : bool, optional
Whether the dataframe contains average info, by default False
Returns
-------
pd.DataFrame
Modified dataframe
"""
metric_cols = METRICS[:]
if average:
metric_cols[1] = "MA-RAE"
cols_drop = []
for col in metric_cols:
mean_col = f"mean_{col}"
std_col = f"std_{col}"
df[col] = df.apply(
lambda row: f"{row[mean_col]:.2f} +/- {row[std_col]:.2f}",
axis=1
)
cols_drop.extend([mean_col, std_col])
df = df.drop(columns=cols_drop)
return df |