Maria Castellanos commited on
Commit
d1f7806
Β·
1 Parent(s): 2be70e9

Small changes to about tab

Browse files
Files changed (3) hide show
  1. app.py +15 -9
  2. requirements.txt +2 -1
  3. utils.py +2 -0
app.py CHANGED
@@ -66,7 +66,7 @@ def update_current_dataframe():
66
  logger.info("Fetching latest dataset for leaderboard...")
67
  current_df = fetch_dataset_df()
68
  logger.debug(f"Dataset version updated")
69
- time.sleep(30) # Check for updates every 30 seconds
70
 
71
  threading.Thread(target=update_current_dataframe, daemon=True).start()
72
 
@@ -138,11 +138,13 @@ with gr.Blocks(title="OpenADMET ADMET Challenge", fill_height=False,
138
  - Mouse Gastrocnemius Muscle Binding (**MGMB**): % Unbound
139
 
140
  Find more information about these endpoints on our [blog](https://openadmet.ghost.io/openadmet-expansionrx-blind-challenge/).
141
- **UPDATE:** The Challenge is now live! Data available at the following Hugging Face Datasets
142
- Training: https://huggingface.co/datasets/openadmet/openadmet-expansionrx-challenge-train-data
143
- Test: https://huggingface.co/datasets/openadmet/openadmet-expansionrx-challenge-test-data-blinded
144
- You can also watch a [Webinar](https://www.youtube.com/watch?v=9v0Ej_FL6k0) introducing the challenge run with [Collaborative Drug Discovery](https://www.collaborativedrug.com/).
145
- We also have a [form](https://forms.gle/KiviZ7AaGcuqtrwH8) you can fill out for access to a CDD vault containing the challenge data and access to some other tools.
 
 
146
 
147
  ## βœ… How to Participate
148
  1. **Register**: Create an account with Hugging Face.
@@ -166,12 +168,15 @@ with gr.Blocks(title="OpenADMET ADMET Challenge", fill_height=False,
166
  | Caco-2 Permeability Papp A>B | 10^-6 cm/s | float | Caco-2 Permeability Papp A>B |
167
  | MPPB | % Unbound | float | Mouse Plasma Protein Binding |
168
  | MBPB | % Unbound | float | Mouse Brain Protein Binding |
169
- | MGMB. | % Unbound | float | Mouse Gastrocnemius Muscle Binding |
 
170
  You can download the training data from the [Hugging Face dataset](https://huggingface.co/datasets/openadmet/openadmet-challenge-train-data).
 
171
  The test set will remained blinded until the challenge submission deadline. You will be tasked with predicting the same set of ADMET endpoints for the test set molecules.
172
 
173
- The training and blinded test set will also be made available on the [CDD Vault](https://www.collaborativedrug.com/). An account to access the CDD Vault can be requested by emailing **openadmet@omsf.io**.
174
  Note that by joining the Vault, your account will be visible to other participants, so this option is **not recommended for those wishing to remain anonymous.**
 
175
  ## πŸ“ Evaluation
176
  The challenge will be judged based on the following criteria:
177
  - We welcome submissions of any kind, including machine learning and physics-based approaches. You can also employ pre-training approaches as you see fit,
@@ -183,7 +188,8 @@ with gr.Blocks(title="OpenADMET ADMET Challenge", fill_height=False,
183
  - The endpoints will be judged individually by mean absolute error (**MAE**), while an overall leaderboard will be judged by the macro-averaged relative absolute error (**MA-RAE**).
184
  - For endpoints that are not already on a log scale (e.g LogD) they will be transformed to log scale to minimize the impact of outliers on evaluation.
185
  - We will estimate errors on the metrics using bootstrapping and use the statistical testing workflow outlined in [this paper](https://chemrxiv.org/engage/chemrxiv/article-details/672a91bd7be152b1d01a926b) to determine if model performance is statistically distinct.
186
- πŸ“… **Timeline**:
 
187
  - **September 16:** Challenge announcement
188
  - **October 14:** Second announcement and sample data release
189
  - **October 27:** Challenge starts
 
66
  logger.info("Fetching latest dataset for leaderboard...")
67
  current_df = fetch_dataset_df()
68
  logger.debug(f"Dataset version updated")
69
+ time.sleep(60) # Check for updates every 60 seconds
70
 
71
  threading.Thread(target=update_current_dataframe, daemon=True).start()
72
 
 
138
  - Mouse Gastrocnemius Muscle Binding (**MGMB**): % Unbound
139
 
140
  Find more information about these endpoints on our [blog](https://openadmet.ghost.io/openadmet-expansionrx-blind-challenge/).
141
+
142
+ **UPDATE:** The Challenge is now live! Data available at the following Hugging Face Datasets
143
+
144
+ - Training: https://huggingface.co/datasets/openadmet/openadmet-expansionrx-challenge-train-data
145
+ - Test: https://huggingface.co/datasets/openadmet/openadmet-expansionrx-challenge-test-data-blinded
146
+
147
+ You can also watch a [Webinar](https://www.youtube.com/watch?v=9v0Ej_FL6k0) where we introduce the challenge, hosted by [Collaborative Drug Discovery (CDD)](https://www.collaborativedrug.com/).
148
 
149
  ## βœ… How to Participate
150
  1. **Register**: Create an account with Hugging Face.
 
168
  | Caco-2 Permeability Papp A>B | 10^-6 cm/s | float | Caco-2 Permeability Papp A>B |
169
  | MPPB | % Unbound | float | Mouse Plasma Protein Binding |
170
  | MBPB | % Unbound | float | Mouse Brain Protein Binding |
171
+ | MGMB | % Unbound | float | Mouse Gastrocnemius Muscle Binding |
172
+
173
  You can download the training data from the [Hugging Face dataset](https://huggingface.co/datasets/openadmet/openadmet-challenge-train-data).
174
+
175
  The test set will remained blinded until the challenge submission deadline. You will be tasked with predicting the same set of ADMET endpoints for the test set molecules.
176
 
177
+ The training and blinded test set will also be made available on the [CDD Vault](https://www.collaborativedrug.com/). An account to access the CDD Vault can be requested by filling out this [form](https://forms.gle/KiviZ7AaGcuqtrwH8, which can also be used to request access to some other tools.
178
  Note that by joining the Vault, your account will be visible to other participants, so this option is **not recommended for those wishing to remain anonymous.**
179
+
180
  ## πŸ“ Evaluation
181
  The challenge will be judged based on the following criteria:
182
  - We welcome submissions of any kind, including machine learning and physics-based approaches. You can also employ pre-training approaches as you see fit,
 
188
  - The endpoints will be judged individually by mean absolute error (**MAE**), while an overall leaderboard will be judged by the macro-averaged relative absolute error (**MA-RAE**).
189
  - For endpoints that are not already on a log scale (e.g LogD) they will be transformed to log scale to minimize the impact of outliers on evaluation.
190
  - We will estimate errors on the metrics using bootstrapping and use the statistical testing workflow outlined in [this paper](https://chemrxiv.org/engage/chemrxiv/article-details/672a91bd7be152b1d01a926b) to determine if model performance is statistically distinct.
191
+
192
+ ## πŸ“… **Timeline**:
193
  - **September 16:** Challenge announcement
194
  - **October 14:** Second announcement and sample data release
195
  - **October 27:** Challenge starts
requirements.txt CHANGED
@@ -5,4 +5,5 @@ gradio-leaderboard
5
  plotly
6
  scipy
7
  scikit-learn
8
- loguru
 
 
5
  plotly
6
  scipy
7
  scikit-learn
8
+ loguru
9
+ statsmodels
utils.py CHANGED
@@ -11,6 +11,8 @@ def make_user_clickable(name: str):
11
  link =f'https://huggingface.co/{name}'
12
  return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{name}</a>'
13
  def make_tag_clickable(tag: str):
 
 
14
  return f'<a target="_blank" href="{tag}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">link</a>'
15
 
16
  def fetch_dataset_df():
 
11
  link =f'https://huggingface.co/{name}'
12
  return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{name}</a>'
13
  def make_tag_clickable(tag: str):
14
+ if tag is None:
15
+ return "Not submitted"
16
  return f'<a target="_blank" href="{tag}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">link</a>'
17
 
18
  def fetch_dataset_df():