File size: 12,910 Bytes
651b002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303cbb8
651b002
 
 
 
 
 
 
d3ddb39
651b002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303cbb8
651b002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303cbb8
651b002
 
 
 
 
 
 
 
303cbb8
651b002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303cbb8
651b002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303cbb8
 
 
 
 
651b002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303cbb8
651b002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303cbb8
651b002
 
 
 
 
 
33a42fa
303cbb8
651b002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303cbb8
651b002
 
 
 
 
 
 
 
303cbb8
 
 
 
651b002
 
 
 
303cbb8
651b002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86f872b
 
 
651b002
 
 
 
 
 
 
 
 
 
 
 
 
 
303cbb8
8c4b8df
651b002
 
 
303cbb8
8c4b8df
651b002
63a3946
651b002
63a3946
651b002
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from functools import partial
import datetime
from zipfile import ZipFile

import sqlite3
import time

import gradio as gr
from tqdm.auto import tqdm
import pandas as pd
import numpy as np
import os
from datetime import timedelta, datetime
from pathlib import Path

import torch
from sklearn.utils import shuffle

from model import Collection, init_w, FSRS, WeightClipper, lineToTensor


# Extract the collection file or deck file to get the .anki21 database.


def extract(file, prefix):
    proj_dir = Path(f'projects/{prefix}_{file.orig_name.replace(".", "_").replace("@", "_")}')
    with ZipFile(file, 'r') as zip_ref:
        zip_ref.extractall(proj_dir)
        # print(f"Extracted {file.orig_name} successfully!")
    return proj_dir


def create_time_series_features(revlog_start_date, timezone, next_day_starts_at, proj_dir,
                                progress=gr.Progress(track_tqdm=True)):
    if os.path.isfile(proj_dir / "collection.anki21b"):
        os.remove(proj_dir / "collection.anki21b")
        raise gr.Error(
                "Please export the file with `support older Anki versions` if you use the latest version of Anki.")
    elif os.path.isfile(proj_dir / "collection.anki21"):
        con = sqlite3.connect(proj_dir / "collection.anki21")
    elif os.path.isfile(proj_dir / "collection.anki2"):
        con = sqlite3.connect(proj_dir / "collection.anki2")
    else:
        raise Exception("Collection not exist!")
    cur = con.cursor()
    res = cur.execute("SELECT * FROM revlog")
    revlog = res.fetchall()

    df = pd.DataFrame(revlog)
    df.columns = ['id', 'cid', 'usn', 'r', 'ivl',
                  'last_lvl', 'factor', 'time', 'type']
    df = df[(df['cid'] <= time.time() * 1000) &
            (df['id'] <= time.time() * 1000) &
            (df['r'] > 0) &
            (df['id'] >= time.mktime(datetime.strptime(revlog_start_date, "%Y-%m-%d").timetuple()) * 1000)].copy()
    df['create_date'] = pd.to_datetime(df['cid'] // 1000, unit='s')
    df['create_date'] = df['create_date'].dt.tz_localize(
            'UTC').dt.tz_convert(timezone)
    df['review_date'] = pd.to_datetime(df['id'] // 1000, unit='s')
    df['review_date'] = df['review_date'].dt.tz_localize(
            'UTC').dt.tz_convert(timezone)
    df.drop(df[df['review_date'].dt.year < 2006].index, inplace=True)
    df.sort_values(by=['cid', 'id'], inplace=True, ignore_index=True)
    type_sequence = np.array(df['type'])
    df.to_csv(proj_dir / "revlog.csv", index=False)
    # print("revlog.csv saved.")
    df = df[(df['type'] == 0) | (df['type'] == 1)].copy()
    df['real_days'] = df['review_date'] - timedelta(hours=next_day_starts_at)
    df['real_days'] = pd.DatetimeIndex(df['real_days'].dt.floor('D')).to_julian_date()
    df.drop_duplicates(['cid', 'real_days'], keep='first', inplace=True)
    df['delta_t'] = df.real_days.diff()
    df.dropna(inplace=True)
    df['delta_t'] = df['delta_t'].astype(dtype=int)
    df['i'] = 1
    df['r_history'] = ""
    df['t_history'] = ""
    col_idx = {key: i for i, key in enumerate(df.columns)}

    # code from https://github.com/L-M-Sherlock/anki_revlog_analysis/blob/main/revlog_analysis.py
    def get_feature(x):
        for idx, log in enumerate(x.itertuples()):
            if idx == 0:
                x.iloc[idx, col_idx['delta_t']] = 0
            if idx == x.shape[0] - 1:
                break
            x.iloc[idx + 1, col_idx['i']] = x.iloc[idx, col_idx['i']] + 1
            x.iloc[idx + 1, col_idx[
                't_history']] = f"{x.iloc[idx, col_idx['t_history']]},{x.iloc[idx, col_idx['delta_t']]}"
            x.iloc[idx + 1, col_idx['r_history']] = f"{x.iloc[idx, col_idx['r_history']]},{x.iloc[idx, col_idx['r']]}"
        return x

    tqdm.pandas(desc='Saving Trainset')
    df = df.groupby('cid', as_index=False).progress_apply(get_feature)
    df["t_history"] = df["t_history"].map(lambda x: x[1:] if len(x) > 1 else x)
    df["r_history"] = df["r_history"].map(lambda x: x[1:] if len(x) > 1 else x)
    df.to_csv(proj_dir / 'revlog_history.tsv', sep="\t", index=False)
    # print("Trainset saved.")

    def cal_retention(group: pd.DataFrame) -> pd.DataFrame:
        group['retention'] = round(group['r'].map(lambda x: {1: 0, 2: 1, 3: 1, 4: 1}[x]).mean(), 4)
        group['total_cnt'] = group.shape[0]
        return group

    tqdm.pandas(desc='Calculating Retention')
    df = df.groupby(by=['r_history', 'delta_t']).progress_apply(cal_retention)
    # print("Retention calculated.")
    df = df.drop(columns=['id', 'cid', 'usn', 'ivl', 'last_lvl', 'factor', 'time', 'type', 'create_date', 'review_date',
                          'real_days', 'r', 't_history'])
    df.drop_duplicates(inplace=True)
    df = df[(df['retention'] < 1) & (df['retention'] > 0)]

    def cal_stability(group: pd.DataFrame) -> pd.DataFrame:
        if group['i'].values[0] > 1:
            r_ivl_cnt = sum(group['delta_t'] * group['retention'].map(np.log) * pow(group['total_cnt'], 2))
            ivl_ivl_cnt = sum(group['delta_t'].map(lambda x: x ** 2) * pow(group['total_cnt'], 2))
            group['stability'] = round(np.log(0.9) / (r_ivl_cnt / ivl_ivl_cnt), 1)
        else:
            group['stability'] = 0.0
        group['group_cnt'] = sum(group['total_cnt'])
        group['avg_retention'] = round(
                sum(group['retention'] * pow(group['total_cnt'], 2)) / sum(pow(group['total_cnt'], 2)), 3)
        group['avg_interval'] = round(
                sum(group['delta_t'] * pow(group['total_cnt'], 2)) / sum(pow(group['total_cnt'], 2)), 1)
        del group['total_cnt']
        del group['retention']
        del group['delta_t']
        return group

    tqdm.pandas(desc='Calculating Stability')
    df = df.groupby(by=['r_history']).progress_apply(cal_stability)
    # print("Stability calculated.")
    df.reset_index(drop=True, inplace=True)
    df.drop_duplicates(inplace=True)
    df.sort_values(by=['r_history'], inplace=True, ignore_index=True)

    df_out = pd.DataFrame()
    if df.shape[0] > 0:
        for idx in tqdm(df.index):
            item = df.loc[idx]
            index = df[(df['i'] == item['i'] + 1) & (df['r_history'].str.startswith(item['r_history']))].index
            df.loc[index, 'last_stability'] = item['stability']
        df['factor'] = round(df['stability'] / df['last_stability'], 2)
        df = df[(df['i'] >= 2) & (df['group_cnt'] >= 100)]
        df['last_recall'] = df['r_history'].map(lambda x: x[-1])
        df = df[df.groupby(['i', 'r_history'])['group_cnt'].transform(max) == df['group_cnt']]
        df.to_csv(proj_dir / 'stability_for_analysis.tsv', sep='\t', index=None)
        # print("1:again, 2:hard, 3:good, 4:easy\n")
        # print(df[df['r_history'].str.contains(r'^[1-4][^124]*$', regex=True)][
        #     ['r_history', 'avg_interval', 'avg_retention', 'stability', 'factor', 'group_cnt']].to_string(
        #         index=False))
        # print("Analysis saved!")

        df_out = df[df['r_history'].str.contains(r'^[1-4][^124]*$', regex=True)][
            ['r_history', 'avg_interval', 'avg_retention', 'stability', 'factor', 'group_cnt']]
    return type_sequence, df_out


def train_model(proj_dir, progress=gr.Progress(track_tqdm=True)):
    model = FSRS(init_w)

    clipper = WeightClipper()
    optimizer = torch.optim.Adam(model.parameters(), lr=5e-4)

    dataset = pd.read_csv(proj_dir / "revlog_history.tsv", sep='\t', index_col=None,
                          dtype={'r_history': str, 't_history': str})
    dataset = dataset[(dataset['i'] > 1) & (dataset['delta_t'] > 0) & (dataset['t_history'].str.count(',0') == 0)]

    tqdm.pandas(desc='Tensorizing Line')
    dataset['tensor'] = dataset.progress_apply(lambda x: lineToTensor(list(zip([x['t_history']], [x['r_history']]))[0]),
                                               axis=1)
    # print("Tensorized!")

    pre_train_set = dataset[dataset['i'] == 2]
    # pretrain
    epoch_len = len(pre_train_set)
    n_epoch = 1
    pbar = tqdm(desc="Pre-training", colour="red", total=epoch_len * n_epoch)

    for k in range(n_epoch):
        for i, (_, row) in enumerate(shuffle(pre_train_set, random_state=2022 + k).iterrows()):
            model.train()
            optimizer.zero_grad()
            output_t = [(model.zero, model.zero)]
            for input_t in row['tensor']:
                output_t.append(model(input_t, *output_t[-1]))
            loss = model.loss(output_t[-1][0], row['delta_t'],
                              {1: 0, 2: 1, 3: 1, 4: 1}[row['r']])
            if np.isnan(loss.data.item()):
                # Exception Case
                # print(row, output_t)
                raise Exception('error case')
            loss.backward()
            optimizer.step()
            model.apply(clipper)
            pbar.update()
    pbar.close()
    # for name, param in model.named_parameters():
        # print(f"{name}: {list(map(lambda x: round(float(x), 4), param))}")

    train_set = dataset[dataset['i'] > 2]
    epoch_len = len(train_set)
    n_epoch = 1
    print_len = max(epoch_len * n_epoch // 10, 1)
    pbar = tqdm(desc="Training", total=epoch_len * n_epoch)

    for k in range(n_epoch):
        for i, (_, row) in enumerate(shuffle(train_set, random_state=2022 + k).iterrows()):
            model.train()
            optimizer.zero_grad()
            output_t = [(model.zero, model.zero)]
            for input_t in row['tensor']:
                output_t.append(model(input_t, *output_t[-1]))
            loss = model.loss(output_t[-1][0], row['delta_t'],
                              {1: 0, 2: 1, 3: 1, 4: 1}[row['r']])
            if np.isnan(loss.data.item()):
                # Exception Case
                # print(row, output_t)
                raise Exception('error case')
            loss.backward()
            for param in model.parameters():
                param.grad[:2] = torch.zeros(2)
            optimizer.step()
            model.apply(clipper)
            pbar.update()

            # if (k * epoch_len + i) % print_len == 0:
                # print(f"iteration: {k * epoch_len + i + 1}")
                # for name, param in model.named_parameters():
                    # print(f"{name}: {list(map(lambda x: round(float(x), 4), param))}")
    pbar.close()

    w = list(map(lambda x: round(float(x), 4), dict(model.named_parameters())['w'].data))

    # print("\nTraining finished!")
    return w, dataset


def process_personalized_collection(requestRetention, w):
    my_collection = Collection(w)
    rating_dict = {1: "again", 2: "hard", 3: "good", 4: "easy"}
    rating_markdown = []
    for first_rating in (1, 2, 3, 4):
        rating_markdown.append(f'## First Rating: {first_rating} ({rating_dict[first_rating]})')
        t_history = "0"
        d_history = "0"
        r_history = f"{first_rating}"  # the first rating of the new card
        # print("stability, difficulty, lapses")
        for i in range(10):
            states = my_collection.states(t_history, r_history)
            # print('{0:9.2f} {1:11.2f} {2:7.0f}'.format(
            # *list(map(lambda x: round(float(x), 4), states))))
            next_t = max(round(float(np.log(requestRetention) / np.log(0.9) * states[0])), 1)
            difficulty = round(float(states[1]), 1)
            t_history += f',{int(next_t)}'
            d_history += f',{difficulty}'
            r_history += f",3"
        rating_markdown.append(f"**rating history**: {r_history}")
        rating_markdown.append(f"**interval history**: {t_history}")
        rating_markdown.append(f"**difficulty history**: {d_history}\n")
    rating_markdown = '\n\n'.join(rating_markdown)
    return my_collection, rating_markdown


def log_loss(my_collection, row):
    states = my_collection.states(row['t_history'], row['r_history'])
    row['log_loss'] = float(my_collection.model.loss(states[0], row['delta_t'], {1: 0, 2: 1, 3: 1, 4: 1}[row['r']]))
    return row


def my_loss(dataset, w):
    my_collection = Collection(init_w)
    tqdm.pandas(desc='Calculating Loss before Training')
    dataset = dataset.progress_apply(partial(log_loss, my_collection), axis=1)
    # print(f"Loss before training: {dataset['log_loss'].mean():.4f}")
    loss_before = f"{dataset['log_loss'].mean():.4f}"
    my_collection = Collection(w)
    tqdm.pandas(desc='Calculating Loss After Training')
    dataset = dataset.progress_apply(partial(log_loss, my_collection), axis=1)
    # print(f"Loss after training: {dataset['log_loss'].mean():.4f}")
    loss_after = f"{dataset['log_loss'].mean():.4f}"
    return f"""
**Loss before training**: {loss_before}

**Loss after training**: {loss_after}
    """


def cleanup(proj_dir: Path, files):
    """
    Delete all files in prefix that dont have filenames in files
    :param proj_dir:
    :param files:
    :return:
    """
    for file in proj_dir.glob('*'):
        if file.name not in files:
            os.remove(file)