Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,577 Bytes
74e3b17 69cf5b3 0811d37 74e3b17 de52ad3 74e3b17 7b86855 95c19d6 7b86855 74e3b17 2a5f9fb 74e3b17 95c19d6 2a73469 69cf5b3 74e3b17 69cf5b3 74e3b17 69cf5b3 74e3b17 69cf5b3 74e3b17 69cf5b3 74e3b17 69cf5b3 74e3b17 95c19d6 74e3b17 8b88d2c d084b26 74e3b17 0811d37 95c19d6 69cf5b3 74e3b17 69cf5b3 74e3b17 69cf5b3 95c19d6 8b88d2c 74e3b17 69cf5b3 74e3b17 95c19d6 8c49cb6 74e3b17 2339ca6 74e3b17 95c19d6 0811d37 69cf5b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import json
import os
import re
import gradio as gr
import numpy as np
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi, hf_hub_download
from src.backend import backend_routine
from src.css_html_js import dark_mode_gradio_js
from src.logging import configure_root_logger, setup_logger
configure_root_logger()
logger = setup_logger(__name__)
API = HfApi(token=os.environ.get("TOKEN"))
RESULTS_REPO = f"open-rl-leaderboard/results"
ALL_ENV_IDS = {
"Atari": [
"BeamRiderNoFrameskip-v4",
"BreakoutNoFrameskip-v4",
],
"Box2D": [
"LunarLander-v2",
"BipedalWalker-v3",
],
"Classic control": [
"CartPole-v1",
"MountainCar-v0",
],
"MuJoCo": [
"Hopper-v4",
"HalfCheetah-v4",
],
}
def get_leaderboard_df():
# List all results files in results repo
pattern = re.compile(r"^[^/]*/[^/]*/[^/]*results_[a-f0-9]+\.json$")
filenames = API.list_repo_files(RESULTS_REPO, repo_type="dataset")
filenames = [filename for filename in filenames if pattern.match(filename)]
data = []
for filename in filenames:
path = hf_hub_download(repo_id=RESULTS_REPO, filename=filename, repo_type="dataset")
with open(path) as fp:
report = json.load(fp)
user_id, model_id = report["config"]["model_id"].split("/")
row = {"user_id": user_id, "model_id": model_id}
if report["status"] == "DONE" and len(report["results"]) > 0:
env_ids = list(report["results"].keys())
assert len(env_ids) == 1, "Only one environment supported for the moment"
row["env_id"] = env_ids[0]
row["mean_episodic_return"] = np.mean(report["results"][env_ids[0]]["episodic_returns"])
data.append(row)
df = pd.DataFrame(data) # create DataFrame
df = df.fillna("") # replace NaN values with empty strings
return df
TITLE = """
π Open RL Leaderboard
"""
INTRODUCTION_TEXT = """
Welcome to the Open RL Leaderboard! This is a community-driven benchmark for reinforcement learning models.
"""
ABOUT_TEXT = """
The Open RL Leaderboard is a community-driven benchmark for reinforcement learning models.
"""
def select_env(df: pd.DataFrame, env_id: str):
df = df[df["env_id"] == env_id]
# Add the ranking
df = df.sort_values("mean_episodic_return", ascending=False)
df["ranking"] = np.arange(1, len(df) + 1)
# Add hyperlinks
for index, row in df.iterrows():
user_id = row["user_id"]
model_id = row["model_id"]
df.loc[index, "user_id"] = f"[{user_id}](https://huggingface.co/{user_id})"
df.loc[index, "model_id"] = f"[{model_id}](https://huggingface.co/{user_id}/{model_id})"
df = df[["ranking", "user_id", "model_id", "mean_episodic_return"]]
return df.values.tolist()
with gr.Blocks(js=dark_mode_gradio_js) as demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Leaderboard"):
df = get_leaderboard_df()
for env_domain, env_ids in ALL_ENV_IDS.items():
with gr.TabItem(env_domain):
for env_id in env_ids:
with gr.TabItem(env_id):
with gr.Row(equal_height=False):
gr.components.Dataframe(
value=select_env(df, env_id),
headers=["π Ranking", "π§ User", "π€ Model id", "π Mean episodic return"],
datatype=["number", "markdown", "markdown", "number"],
row_count=(10, "fixed"),
scale=3,
)
gr.Video(
"https://huggingface.co/qgallouedec/MsPacmanNoFrameskip-v4-dqn_atari-seed1/resolve/main/replay.mp4",
autoplay=True,
scale=1,
min_width=50,
)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(ABOUT_TEXT)
scheduler = BackgroundScheduler()
scheduler.add_job(func=backend_routine, trigger="interval", seconds=0.5 * 60, max_instances=1)
scheduler.start()
if __name__ == "__main__":
demo.queue().launch()
|