Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Quentin Gallouédec
commited on
Commit
•
7b86855
1
Parent(s):
69cf5b3
backend dedicated file
Browse files- app.py +2 -73
- src/backend.py +82 -0
app.py
CHANGED
@@ -1,17 +1,15 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
import pprint
|
4 |
import re
|
5 |
-
import tempfile
|
6 |
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
10 |
from apscheduler.schedulers.background import BackgroundScheduler
|
11 |
-
from huggingface_hub import
|
12 |
|
|
|
13 |
from src.css_html_js import dark_mode_gradio_js
|
14 |
-
from src.evaluation import evaluate
|
15 |
from src.logging import configure_root_logger, setup_logger
|
16 |
|
17 |
configure_root_logger()
|
@@ -20,7 +18,6 @@ logger = setup_logger(__name__)
|
|
20 |
API = HfApi(token=os.environ.get("TOKEN"))
|
21 |
RESULTS_REPO = f"open-rl-leaderboard/results"
|
22 |
|
23 |
-
pp = pprint.PrettyPrinter(width=80)
|
24 |
|
25 |
ALL_ENV_IDS = {
|
26 |
"Atari": [
|
@@ -42,74 +39,6 @@ ALL_ENV_IDS = {
|
|
42 |
}
|
43 |
|
44 |
|
45 |
-
def _backend_routine():
|
46 |
-
# List only the text classification models
|
47 |
-
rl_models = list(API.list_models(filter="reinforcement-learning"))
|
48 |
-
logger.info(f"Found {len(rl_models)} RL models")
|
49 |
-
compatible_models = []
|
50 |
-
for model in rl_models:
|
51 |
-
filenames = [sib.rfilename for sib in model.siblings]
|
52 |
-
if "agent.pt" in filenames:
|
53 |
-
compatible_models.append((model.modelId, model.sha))
|
54 |
-
|
55 |
-
logger.info(f"Found {len(compatible_models)} compatible models")
|
56 |
-
|
57 |
-
# Get the results
|
58 |
-
pattern = re.compile(r"^[^/]*/[^/]*/[^/]*results_[a-f0-9]+\.json$")
|
59 |
-
filenames = API.list_repo_files(RESULTS_REPO, repo_type="dataset")
|
60 |
-
filenames = [filename for filename in filenames if pattern.match(filename)]
|
61 |
-
|
62 |
-
evaluated_models = set()
|
63 |
-
for filename in filenames:
|
64 |
-
path = hf_hub_download(repo_id=RESULTS_REPO, filename=filename, repo_type="dataset")
|
65 |
-
with open(path) as fp:
|
66 |
-
report = json.load(fp)
|
67 |
-
evaluated_models.add((report["config"]["model_id"], report["config"]["model_sha"]))
|
68 |
-
|
69 |
-
# Find the models that are not associated with any results
|
70 |
-
pending_models = set(compatible_models) - evaluated_models
|
71 |
-
logger.info(f"Found {len(pending_models)} pending models")
|
72 |
-
|
73 |
-
# Run an evaluation on the models
|
74 |
-
with tempfile.TemporaryDirectory() as tmp_dir:
|
75 |
-
commits = []
|
76 |
-
for model_id, sha in pending_models:
|
77 |
-
logger.info(f"Running evaluation on {model_id}")
|
78 |
-
report = {"config": {"model_id": model_id, "model_sha": sha}}
|
79 |
-
try:
|
80 |
-
evaluations = evaluate(model_id, revision=sha)
|
81 |
-
except Exception as e:
|
82 |
-
logger.error(f"Error evaluating {model_id}: {e}")
|
83 |
-
evaluations = None
|
84 |
-
|
85 |
-
if evaluations is not None:
|
86 |
-
report["results"] = evaluations
|
87 |
-
report["status"] = "DONE"
|
88 |
-
else:
|
89 |
-
report["status"] = "FAILED"
|
90 |
-
|
91 |
-
# Update the results
|
92 |
-
dumped = json.dumps(report, indent=2)
|
93 |
-
path_in_repo = f"{model_id}/results_{sha}.json"
|
94 |
-
local_path = os.path.join(tmp_dir, path_in_repo)
|
95 |
-
os.makedirs(os.path.dirname(local_path), exist_ok=True)
|
96 |
-
with open(local_path, "w") as f:
|
97 |
-
f.write(dumped)
|
98 |
-
|
99 |
-
commits.append(CommitOperationAdd(path_in_repo=path_in_repo, path_or_fileobj=local_path))
|
100 |
-
|
101 |
-
API.create_commit(
|
102 |
-
repo_id=RESULTS_REPO, commit_message="Add evaluation results", operations=commits, repo_type="dataset"
|
103 |
-
)
|
104 |
-
|
105 |
-
|
106 |
-
def backend_routine():
|
107 |
-
try:
|
108 |
-
_backend_routine()
|
109 |
-
except Exception as e:
|
110 |
-
logger.error(f"{e.__class__.__name__}: {str(e)}")
|
111 |
-
|
112 |
-
|
113 |
def get_leaderboard_df():
|
114 |
# List all results files in results repo
|
115 |
pattern = re.compile(r"^[^/]*/[^/]*/[^/]*results_[a-f0-9]+\.json$")
|
|
|
1 |
import json
|
2 |
import os
|
|
|
3 |
import re
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
+
from huggingface_hub import HfApi, hf_hub_download
|
10 |
|
11 |
+
from src.backend import backend_routine
|
12 |
from src.css_html_js import dark_mode_gradio_js
|
|
|
13 |
from src.logging import configure_root_logger, setup_logger
|
14 |
|
15 |
configure_root_logger()
|
|
|
18 |
API = HfApi(token=os.environ.get("TOKEN"))
|
19 |
RESULTS_REPO = f"open-rl-leaderboard/results"
|
20 |
|
|
|
21 |
|
22 |
ALL_ENV_IDS = {
|
23 |
"Atari": [
|
|
|
39 |
}
|
40 |
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def get_leaderboard_df():
|
43 |
# List all results files in results repo
|
44 |
pattern = re.compile(r"^[^/]*/[^/]*/[^/]*results_[a-f0-9]+\.json$")
|
src/backend.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
from huggingface_hub import CommitOperationAdd, HfApi, hf_hub_download
|
7 |
+
|
8 |
+
from src.evaluation import evaluate
|
9 |
+
from src.logging import setup_logger
|
10 |
+
|
11 |
+
logger = setup_logger(__name__)
|
12 |
+
|
13 |
+
API = HfApi(token=os.environ.get("TOKEN"))
|
14 |
+
RESULTS_REPO = "open-rl-leaderboard/results"
|
15 |
+
|
16 |
+
|
17 |
+
def _backend_routine():
|
18 |
+
# List only the text classification models
|
19 |
+
rl_models = list(API.list_models(filter="reinforcement-learning"))
|
20 |
+
logger.info(f"Found {len(rl_models)} RL models")
|
21 |
+
compatible_models = []
|
22 |
+
for model in rl_models:
|
23 |
+
filenames = [sib.rfilename for sib in model.siblings]
|
24 |
+
if "agent.pt" in filenames:
|
25 |
+
compatible_models.append((model.modelId, model.sha))
|
26 |
+
|
27 |
+
logger.info(f"Found {len(compatible_models)} compatible models")
|
28 |
+
|
29 |
+
# Get the results
|
30 |
+
pattern = re.compile(r"^[^/]*/[^/]*/[^/]*results_[a-f0-9]+\.json$")
|
31 |
+
filenames = API.list_repo_files(RESULTS_REPO, repo_type="dataset")
|
32 |
+
filenames = [filename for filename in filenames if pattern.match(filename)]
|
33 |
+
|
34 |
+
evaluated_models = set()
|
35 |
+
for filename in filenames:
|
36 |
+
path = hf_hub_download(repo_id=RESULTS_REPO, filename=filename, repo_type="dataset")
|
37 |
+
with open(path) as fp:
|
38 |
+
report = json.load(fp)
|
39 |
+
evaluated_models.add((report["config"]["model_id"], report["config"]["model_sha"]))
|
40 |
+
|
41 |
+
# Find the models that are not associated with any results
|
42 |
+
pending_models = set(compatible_models) - evaluated_models
|
43 |
+
logger.info(f"Found {len(pending_models)} pending models")
|
44 |
+
|
45 |
+
# Run an evaluation on the models
|
46 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
47 |
+
commits = []
|
48 |
+
for model_id, sha in pending_models:
|
49 |
+
logger.info(f"Running evaluation on {model_id}")
|
50 |
+
report = {"config": {"model_id": model_id, "model_sha": sha}}
|
51 |
+
try:
|
52 |
+
evaluations = evaluate(model_id, revision=sha)
|
53 |
+
except Exception as e:
|
54 |
+
logger.error(f"Error evaluating {model_id}: {e}")
|
55 |
+
evaluations = None
|
56 |
+
|
57 |
+
if evaluations is not None:
|
58 |
+
report["results"] = evaluations
|
59 |
+
report["status"] = "DONE"
|
60 |
+
else:
|
61 |
+
report["status"] = "FAILED"
|
62 |
+
|
63 |
+
# Update the results
|
64 |
+
dumped = json.dumps(report, indent=2)
|
65 |
+
path_in_repo = f"{model_id}/results_{sha}.json"
|
66 |
+
local_path = os.path.join(tmp_dir, path_in_repo)
|
67 |
+
os.makedirs(os.path.dirname(local_path), exist_ok=True)
|
68 |
+
with open(local_path, "w") as f:
|
69 |
+
f.write(dumped)
|
70 |
+
|
71 |
+
commits.append(CommitOperationAdd(path_in_repo=path_in_repo, path_or_fileobj=local_path))
|
72 |
+
|
73 |
+
API.create_commit(
|
74 |
+
repo_id=RESULTS_REPO, commit_message="Add evaluation results", operations=commits, repo_type="dataset"
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
def backend_routine():
|
79 |
+
try:
|
80 |
+
_backend_routine()
|
81 |
+
except Exception as e:
|
82 |
+
logger.error(f"{e.__class__.__name__}: {str(e)}")
|