Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 10,171 Bytes
74e3b17 69cf5b3 0811d37 74e3b17 de52ad3 74e3b17 5174522 95c19d6 7b86855 3922a8b 74e3b17 2a5f9fb 3922a8b 74e3b17 95c19d6 2a73469 69cf5b3 3922a8b 69cf5b3 3922a8b 103ee13 3922a8b 103ee13 3922a8b 69cf5b3 3922a8b 69cf5b3 3922a8b 69cf5b3 103ee13 69cf5b3 3922a8b 103ee13 69cf5b3 74e3b17 69cf5b3 74e3b17 69cf5b3 5174522 69cf5b3 74e3b17 69cf5b3 74e3b17 69cf5b3 74e3b17 69cf5b3 3922a8b 74e3b17 3922a8b 69cf5b3 3922a8b 69cf5b3 041b899 69cf5b3 95c19d6 08990fb 041b899 74e3b17 69cf5b3 3922a8b 69cf5b3 3922a8b 69cf5b3 3922a8b 6366df9 3922a8b 74e3b17 95c19d6 8c49cb6 74e3b17 3922a8b 74e3b17 95c19d6 0811d37 69cf5b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import json
import os
import re
import gradio as gr
import numpy as np
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from src.backend import backend_routine
from src.logging import configure_root_logger, setup_logger
configure_root_logger()
logger = setup_logger(__name__)
API = HfApi(token=os.environ.get("TOKEN"))
RESULTS_REPO = f"open-rl-leaderboard/results"
ALL_ENV_IDS = {
"Atari": [
"Adventure",
"AirRaid",
"Alien",
"Amidar",
"Assault",
"Asterix",
"Asteroids",
"Atlantis",
"BankHeist",
"BattleZone",
"BeamRider",
"Berzerk",
"Bowling",
"Boxing",
"Breakout",
"Carnival",
"Centipede",
"ChopperCommand",
"CrazyClimber",
"Defender",
"DemonAttack",
"DoubleDunk",
"ElevatorAction",
"Enduro",
"FishingDerby",
"Freeway",
"Frostbite",
"Gopher",
"Gravitar",
"Hero",
"IceHockey",
"Jamesbond",
"JourneyEscape",
"Kangaroo",
"Krull",
"KungFuMaster",
"MontezumaRevenge",
"MsPacman",
"NameThisGame",
"Phoenix",
"Pitfall",
"Pong",
"Pooyan",
"PrivateEye",
"Qbert",
"Riverraid",
"RoadRunner",
"Robotank",
"Seaquest",
"Skiing",
"Solaris",
"SpaceInvaders",
"StarGunner",
"Tennis",
"TimePilot",
"Tutankham",
"UpNDown",
"Venture",
"VideoPinball",
"WizardOfWor",
"YarsRevenge",
"Zaxxon",
],
"Box2D": [
"BipedalWalker-v3",
"BipedalWalkerHardcore-v3",
"CarRacing-v2",
"LunarLander-v2",
"LunarLanderContinuous-v2",
],
"Toy text": [
"Blackjack-v1",
"CliffWalking-v0",
"FrozenLake-v1",
"FrozenLake8x8-v1",
],
"Classic control": [
"Acrobot-v1",
"CartPole-v1",
"MountainCar-v0",
"MountainCarContinuous-v0",
"Pendulum-v1",
],
"MuJoCo": [
"Ant-v4",
"HalfCheetah-v4",
"Hopper-v4",
"Humanoid-v4",
"HumanoidStandup-v4",
"InvertedDoublePendulum-v4",
"InvertedPendulum-v4",
"Pusher-v4",
"Reacher-v4",
"Swimmer-v4",
"Walker2d-v4",
],
}
def get_leaderboard_df():
# List all results files in results repo
pattern = re.compile(r"^[^/]*/[^/]*/[^/]*results_[a-f0-9]+\.json$")
filenames = API.list_repo_files(RESULTS_REPO, repo_type="dataset")
filenames = [filename for filename in filenames if pattern.match(filename)]
data = []
for filename in filenames:
path = API.hf_hub_download(repo_id=RESULTS_REPO, filename=filename, repo_type="dataset")
with open(path) as fp:
report = json.load(fp)
user_id, model_id = report["config"]["model_id"].split("/")
row = {"user_id": user_id, "model_id": model_id}
if report["status"] == "DONE" and len(report["results"]) > 0:
env_ids = list(report["results"].keys())
assert len(env_ids) == 1, "Only one environment supported for the moment"
row["env_id"] = env_ids[0]
row["mean_episodic_return"] = np.mean(report["results"][env_ids[0]]["episodic_returns"])
data.append(row)
df = pd.DataFrame(data) # create DataFrame
df = df.fillna("") # replace NaN values with empty strings
return df
def select_env(df: pd.DataFrame, env_id: str):
df = df[df["env_id"] == env_id]
df = df.sort_values("mean_episodic_return", ascending=False)
df["ranking"] = np.arange(1, len(df) + 1)
return df
def format_df(df: pd.DataFrame):
# Add hyperlinks
df = df.copy()
for index, row in df.iterrows():
user_id = row["user_id"]
model_id = row["model_id"]
df.loc[index, "user_id"] = f"[{user_id}](https://huggingface.co/{user_id})"
df.loc[index, "model_id"] = f"[{model_id}](https://huggingface.co/{user_id}/{model_id})"
# Keep only the relevant columns
df = df[["ranking", "user_id", "model_id", "mean_episodic_return"]]
return df.values.tolist()
TITLE = """
π Open RL Leaderboard
"""
INTRODUCTION_TEXT = """
Welcome to the Open RL Leaderboard! This is a community-driven benchmark for reinforcement learning models.
"""
ABOUT_TEXT = r"""
The Open RL Leaderboard is a community-driven benchmark for reinforcement learning models.
## π How to have your agent evaluated?
The Open RL Leaderboard constantly scans the π€ Hub to detect new models to be evaluated. For your model to be evaluated, it must meet the following criteria.
1. The model must be public on the π€ Hub
2. The model must contain an `agent.pt` file.
3. The model must be [tagged](https://huggingface.co/docs/hub/model-cards#model-cards) `reinforcement-learning`
4. The model must be [tagged](https://huggingface.co/docs/hub/model-cards#model-cards) with the name of the environment you want to evaluate (for example `MountainCar-v0`)
Once your model meets these criteria, it will be automatically evaluated on the Open RL Leaderboard. That's it!
## ποΈ How do I build the `agent.pt`?
The `agent.pt` file is a [TorchScript module](https://pytorch.org/docs/stable/jit.html#). It must be loadable using `torch.jit.load`.
The module must take batch of observations as input and return batch of actions. To check if your model is compatible with the Open RL Leaderboard, you can run the following code:
```python
import gymnasium as gym
import numpy as np
import torch
agent_path = "path/to/agent.pt"
env_id = ... # e.g. "MountainCar-v0"
agent = torch.jit.load(agent_path)
env = gym.make(env_id)
observations = np.array([env.observation_space.sample()])
observations = torch.from_numpy(observations)
actions = agent(observations)
actions = actions.numpy()[0]
assert env.action_space.contains(actions)
```
## π΅ How are the models evaluated?
The evaluation is done by running the agent on the environment for 100 episodes.
For further information, please refer to the [Open RL Leaderboard evaulation script](https://huggingface.co/spaces/open-rl-leaderboard/leaderboard/blob/main/src/evaluation.py).
### The particular case of Atari environments
Atari environments are evaluated on the `NoFrameskip-v4` version of the environment. For example, to evaluate an agent on the `Pong` environment, you must tag your model with `PongNoFrameskip-v4`. The environment is then wrapped to match the standard Atari preprocessing pipeline.
- No-op reset with a maximum of 30 no-ops
- Max and skip with a skip of 4
- Episodic life (although the reported score is for the full episode, not the life)
- Fire reset
- Clip reward (although the reported score is not clipped)
- Resize observation to 84x84
- Grayscale observation
- Frame stack of 4
## π Troubleshooting
If you encounter any issue, please open an issue on the [Open RL Leaderboard repository](https://huggingface.co/spaces/open-rl-leaderboard/leaderboard/discussions/new).
## π Citation
```bibtex
@misc{open-rl-leaderboard,
author = {Quentin GallouΓ©dec and TODO},
title = {Open RL Leaderboard},
year = {2024},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/open-rl-leaderboard/leaderboard}",
}
```
"""
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Leaderboard"):
df = get_leaderboard_df()
for env_domain, env_ids in ALL_ENV_IDS.items():
with gr.TabItem(env_domain):
for env_id in env_ids:
with gr.TabItem(env_id):
with gr.Row(equal_height=False):
if env_domain == "Atari":
env_id = f"{env_id}NoFrameskip-v4"
env_df = select_env(df, env_id)
gr.components.Dataframe(
value=format_df(env_df),
headers=["π Ranking", "π§ User", "π€ Model id", "π Mean episodic return"],
datatype=["number", "markdown", "markdown", "number"],
row_count=(10, "fixed"),
scale=3,
)
# Get the best model and
if not env_df.empty:
user_id = env_df.iloc[0]["user_id"]
model_id = env_df.iloc[0]["model_id"]
video_path = API.hf_hub_download(
repo_id=f"{user_id}/{model_id}",
filename="replay.mp4",
revision="main",
repo_type="model",
)
video = gr.PlayableVideo(
video_path,
autoplay=True,
scale=1,
min_width=50,
show_download_button=False,
label=model_id,
)
# Doesn't loop for the moment, see https://github.com/gradio-app/gradio/issues/7689
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(ABOUT_TEXT)
scheduler = BackgroundScheduler()
scheduler.add_job(func=backend_routine, trigger="interval", seconds=10 * 60, max_instances=1)
scheduler.start()
if __name__ == "__main__":
demo.queue().launch()
|