Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,295 Bytes
e295ac3 df66f6e e295ac3 df66f6e e295ac3 2a5f9fb e295ac3 2a5f9fb e295ac3 2a5f9fb 06acefd e295ac3 2a5f9fb 122c7af 2293858 e295ac3 2293858 e295ac3 122c7af 2293858 2a5f9fb e295ac3 2293858 122c7af 2a5f9fb 2293858 2a5f9fb d8bf61b 122c7af 2293858 e295ac3 2293858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import pandas as pd
from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
from huggingface_hub.utils._errors import HfHubHTTPError
from pandas import DataFrame
from src.display.utils import AutoEvalColumn, ModelType
from src.envs import H4_TOKEN, PATH_TO_COLLECTION
# Specific intervals for the collections
intervals = {
"1B": pd.Interval(0, 1.5, closed="right"),
"3B": pd.Interval(2.5, 3.5, closed="neither"),
"7B": pd.Interval(6, 8, closed="neither"),
"13B": pd.Interval(10, 14, closed="neither"),
"30B": pd.Interval(25, 35, closed="neither"),
"65B": pd.Interval(60, 70, closed="neither"),
}
def _filter_by_type_and_size(df, model_type, size_interval):
"""Filter DataFrame by model type and parameter size interval."""
type_emoji = model_type.value.symbol[0]
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name] == type_emoji]
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: x in size_interval)
return filtered_df.loc[mask]
def _add_models_to_collection(collection, models, model_type, size):
"""Add best models to the collection and update positions."""
cur_len_collection = len(collection.items)
for ix, model in enumerate(models, start=1):
try:
collection = add_collection_item(
PATH_TO_COLLECTION,
item_id=model,
item_type="model",
exists_ok=True,
note=f"Best {model_type.to_str(' ')} model of around {size} on the leaderboard today!",
token=H4_TOKEN,
)
# Ensure position is correct if item was added
if len(collection.items) > cur_len_collection:
item_object_id = collection.items[-1].item_object_id
update_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix)
cur_len_collection = len(collection.items)
break # assuming we only add the top model
except HfHubHTTPError:
continue
def update_collections(df: DataFrame):
"""Update collections by filtering and adding the best models."""
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN)
cur_best_models = []
for model_type in ModelType:
if not model_type.value.name:
continue
for size, interval in intervals.items():
filtered_df = _filter_by_type_and_size(df, model_type, interval)
best_models = list(
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.dummy.name][:10]
)
print(model_type.value.symbol, size, best_models)
_add_models_to_collection(collection, best_models, model_type, size)
cur_best_models.extend(best_models)
# Cleanup
existing_models = {item.item_id for item in collection.items}
to_remove = existing_models - set(cur_best_models)
for item_id in to_remove:
try:
delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=H4_TOKEN)
except HfHubHTTPError:
continue
|