Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,572 Bytes
2a5f9fb df66f6e 2a5f9fb e0f9194 2a5f9fb df66f6e 6e56e0d 305f9a1 ead4c96 6e56e0d 49a5f27 df66f6e 6e56e0d b4ba8b7 6e56e0d f04f90e 6e56e0d 305f9a1 6e56e0d f04f90e 6e56e0d f04f90e 6e56e0d 0a3530a 305f9a1 0a3530a 6e56e0d 0a3530a ca686d6 7302987 ead4c96 305f9a1 0a3530a ead4c96 0a3530a 7302987 0a3530a 7302987 305f9a1 3dfaf22 6e56e0d 0a3530a 6e56e0d 0a3530a 6e56e0d 7302987 a4c11b8 9f4d66f 6e56e0d 0a3530a 305f9a1 fbbefcc 0c7ef71 305f9a1 e0f9194 2a5f9fb 305f9a1 0c7ef71 305f9a1 0c7ef71 305f9a1 0c7ef71 2a5f9fb 0c7ef71 e0f9194 305f9a1 0a3530a e0f9194 305f9a1 2a5f9fb 0c7ef71 2a5f9fb 305f9a1 0a3530a fc1e99b 2a5f9fb 0a3530a 9d22eee 49a5f27 2671d62 6e56e0d 2671d62 6e56e0d 2671d62 6e56e0d 2671d62 6e56e0d 2671d62 6e56e0d 2671d62 6e56e0d 2a5f9fb f04f90e 0a3530a f04f90e 0a3530a 51b829f 0a3530a f04f90e 51b829f df0b79f 2119dda df0b79f f04f90e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import json
import os
import re
import logging
from collections import defaultdict
from datetime import datetime, timedelta, timezone
import huggingface_hub
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata, parse_safetensors_file_metadata
from transformers import AutoConfig, AutoTokenizer
from src.display.utils import parse_iso8601_datetime, curated_authors
from src.envs import HAS_HIGHER_RATE_LIMIT
# ht to @Wauplin, thank you for the snippet!
# See https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/317
def check_model_card(repo_id: str) -> tuple[bool, str]:
# Returns operation status, and error message
try:
card = ModelCard.load(repo_id)
except huggingface_hub.utils.EntryNotFoundError:
return False, "Please add a model card to your model to explain how you trained/fine-tuned it.", None
# Enforce license metadata
if card.data.license is None and not ("license_name" in card.data and "license_link" in card.data):
return (
False,
(
"License not found. Please add a license to your model card using the `license` metadata or a"
" `license_name`/`license_link` pair."
),
None,
)
# Enforce card content
if len(card.text) < 200:
return False, "Please add a description to your model card, it is too short.", None
return True, "", card
def is_model_on_hub(
model_name: str, revision: str, token: str | None = None, trust_remote_code: bool = False, test_tokenizer: bool = False,
) -> tuple[bool, str, AutoConfig]:
try:
config = AutoConfig.from_pretrained(
model_name, revision=revision, trust_remote_code=trust_remote_code, token=token, force_download=True)
if test_tokenizer:
try:
AutoTokenizer.from_pretrained(
model_name, revision=revision, trust_remote_code=trust_remote_code, token=token,
)
except ValueError as e:
return (False, f"uses a tokenizer which is not in a transformers release: {e}", None)
except Exception:
return (
False,
"'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
None,
)
except Exception:
return (
False,
"'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
None,
)
return True, None, config
except ValueError:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
None,
)
except Exception as e:
if "You are trying to access a gated repo." in str(e):
return True, "uses a gated model.", None
return False, f"was not found or misconfigured on the hub! Error raised was {e.args[0]}", None
def get_model_size(model_info: ModelInfo, precision: str, base_model: str| None) -> tuple[float | None, str]:
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
safetensors = None
adapter_safetensors = None
# hack way to check that model is adapter
is_adapter = "adapter_config.json" in (s.rfilename for s in model_info.siblings)
try:
if is_adapter:
if not base_model:
return None, "Adapter model submission detected. Please ensure the base model information is provided."
adapter_safetensors = parse_safetensors_file_metadata(model_info.id, "adapter_model.safetensors")
safetensors = get_safetensors_metadata(base_model)
else:
safetensors = get_safetensors_metadata(model_info.id)
except Exception as e:
logging.warning(f"Failed to get safetensors metadata for model {model_info.id}: {e!s}")
if safetensors is not None:
model_size = sum(safetensors.parameter_count.values())
if adapter_safetensors is not None:
model_size += sum(safetensors.parameter_count.values())
model_size = round(model_size / 1e9, 3)
else:
try:
size_match = re.search(size_pattern, model_info.id.lower())
if size_match:
model_size = size_match.group(0)
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
else:
return None, "Unknown model size"
except AttributeError:
logging.warning(f"Unable to parse model size from ID: {model_info.id}")
return None, "Unknown model size"
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
model_size = size_factor * model_size
return model_size, ""
def get_model_arch(model_info: ModelInfo):
return model_info.config.get("architectures", "Unknown")
def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota):
# No limit for curated authors
if org_or_user in curated_authors:
return True, ""
# Increase quota first if user has higher limits
if org_or_user in HAS_HIGHER_RATE_LIMIT:
rate_limit_quota *= 2
if org_or_user not in users_to_submission_dates:
return True, ""
submission_dates = sorted(users_to_submission_dates[org_or_user])
time_limit = datetime.now(timezone.utc) - timedelta(days=rate_limit_period)
submissions_after_timelimit = [
parse_iso8601_datetime(d) for d in submission_dates
if parse_iso8601_datetime(d) > time_limit
]
num_models_submitted_in_period = len(submissions_after_timelimit)
# Use >= to correctly enforce the rate limit
if num_models_submitted_in_period >= rate_limit_quota:
error_msg = f"Organisation or user `{org_or_user}` already has {num_models_submitted_in_period} model requests submitted in the last {rate_limit_period} days.\n"
error_msg += "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
return False, error_msg
return True, ""
def already_submitted_models(requested_models_dir: str) -> set[str]:
depth = 1
file_names = []
users_to_submission_dates = defaultdict(list)
for root, _, files in os.walk(requested_models_dir):
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
if current_depth == depth:
for file in files:
if not file.endswith(".json"):
continue
with open(os.path.join(root, file), "r") as f:
info = json.load(f)
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
# Select organisation
if info["model"].count("/") == 0 or "submitted_time" not in info:
continue
organisation, _ = info["model"].split("/")
users_to_submission_dates[organisation].append(info["submitted_time"])
return set(file_names), users_to_submission_dates
def get_model_tags(model_card, model: str):
is_merge_from_metadata = False
is_moe_from_metadata = False
tags = []
if model_card is None:
return tags
if model_card.data.tags:
is_merge_from_metadata = any(
[tag in model_card.data.tags for tag in ["merge", "moerge", "mergekit", "lazymergekit"]]
)
is_moe_from_metadata = any([tag in model_card.data.tags for tag in ["moe", "moerge"]])
is_merge_from_model_card = any(
keyword in model_card.text.lower() for keyword in ["merged model", "merge model", "moerge"]
)
if is_merge_from_model_card or is_merge_from_metadata:
tags.append("merge")
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"])
# Hardcoding because of gating problem
if "Qwen/Qwen1.5-32B" in model:
is_moe_from_model_card = False
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
tags.append("moe")
return tags
|