Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 2,039 Bytes
2a5f9fb 6a5081f df66f6e 2a5f9fb 6a5081f 2a5f9fb 0c7ef71 2a5f9fb 0a3530a 63dac32 6a5081f 63dac32 6a5081f 2e74c81 6a5081f 395eff6 0c7ef71 2a5f9fb df66f6e 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import os
import logging
from huggingface_hub import HfApi
# DEBUG
# Logging the environment variable to debug
hf_home_env = os.getenv("HF_HOME", "Not Set")
print(f"HF_HOME environment variable is set to: {hf_home_env}")
# clone / pull the lmeh eval data
H4_TOKEN = os.environ.get("H4_TOKEN", None)
REPO_ID = "HuggingFaceH4/open_llm_leaderboard"
QUEUE_REPO = "open-llm-leaderboard/requests"
DYNAMIC_INFO_REPO = "open-llm-leaderboard/dynamic_model_information"
RESULTS_REPO = "open-llm-leaderboard/results"
PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests"
PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
CACHE_PATH = os.getenv("HF_HOME", ".")
# DEBUG STARTS
print(f"Initial CACHE_PATH set to: {CACHE_PATH}")
# Create directory if it doesn't exist and check write permission
if not os.path.isdir(CACHE_PATH):
try:
os.makedirs(CACHE_PATH, exist_ok=True)
print(f"Created directory at: {CACHE_PATH}")
except PermissionError as e:
print(f"PermissionError: Unable to create directory at {CACHE_PATH}. {str(e)}")
else:
print(f"Directory already exists at: {CACHE_PATH}")
# Check write access
if not os.access(CACHE_PATH, os.W_OK):
print(f"No write access to CACHE_PATH: {CACHE_PATH}. Resetting to current directory.")
CACHE_PATH = "."
else:
print(f"Write access confirmed for CACHE_PATH: {CACHE_PATH}")
# DEBUG ENDS
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
DYNAMIC_INFO_PATH = os.path.join(CACHE_PATH, "dynamic-info")
DYNAMIC_INFO_FILE_PATH = os.path.join(DYNAMIC_INFO_PATH, "model_infos.json")
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
PATH_TO_COLLECTION = "open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03"
# Rate limit variables
RATE_LIMIT_PERIOD = 7
RATE_LIMIT_QUOTA = 5
HAS_HIGHER_RATE_LIMIT = ["TheBloke"]
API = HfApi(token=H4_TOKEN)
|