Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 11,700 Bytes
0a3530a 6b87e28 bcd77eb 9346f1c 4fc3864 4596a70 2a5f9fb bcd77eb 60ff46b 2a5f9fb 8c49cb6 0a3530a 8c49cb6 976f398 df66f6e 0a3530a 9d22eee 0a3530a 4fc3864 0a3530a df66f6e 0a3530a 8c49cb6 a5d34d3 092c345 a5d34d3 60ff46b 8ff5577 0a3530a 092c345 10f9b3c 2a5f9fb d084b26 0c7ef71 a5d34d3 092c345 a5d34d3 6b87e28 dbb8b5d a5d34d3 dbb8b5d 6b87e28 0a3530a dbb8b5d a5d34d3 6b87e28 092c345 a5d34d3 6b87e28 a5d34d3 6b87e28 092c345 6b87e28 b7d036c a5d34d3 0c7ef71 b7d036c 4fc3864 0a3530a d084b26 b7d036c 6b87e28 26286b2 4fc3864 551debe 092c345 0a3530a 4fc3864 6b87e28 4fc3864 614ee1f 1f60a20 01233b7 58733e4 6e8f400 10f9b3c 8cb7546 613696b bcd77eb 092c345 bcd77eb 092c345 bcd77eb 092c345 3ac217c 092c345 bcd77eb 8b63c4c 092c345 8b63c4c 092c345 4fc3864 6b87e28 9d6aecc 6e8f400 9d6aecc 2246286 0227006 4ccfada 8dfa543 0227006 8dfa543 6e8f400 00358b1 0227006 6e8f400 a163e5c b323764 9d22eee 8c49cb6 b323764 2762eff b323764 0227006 6e8f400 12cea14 9d22eee 8c49cb6 12cea14 217b585 12cea14 9d22eee 8c49cb6 12cea14 6e8f400 8c49cb6 8cb7546 9d6aecc 6e8f400 12cea14 8c49cb6 6e8f400 8cb7546 d16cee2 67109fc d16cee2 adb0416 d16cee2 092c345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import os
import logging
import time
import gradio as gr
import datasets
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from gradio_space_ci import enable_space_ci
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
FAQ_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
Precision,
WeightType,
fields,
)
from src.envs import (
API,
EVAL_REQUESTS_PATH,
AGGREGATED_REPO,
H4_TOKEN,
QUEUE_REPO,
REPO_ID,
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Start ephemeral Spaces on PRs (see config in README.md)
enable_space_ci()
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
def time_diff_wrapper(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
diff = end_time - start_time
logging.info(f"Time taken for {func.__name__}: {diff} seconds")
return result
return wrapper
@time_diff_wrapper
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
"""Download dataset with exponential backoff retries."""
attempt = 0
while attempt < max_attempts:
try:
logging.info(f"Downloading {repo_id} to {local_dir}")
snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
repo_type=repo_type,
tqdm_class=None,
etag_timeout=30,
max_workers=8,
)
logging.info("Download successful")
return
except Exception as e:
wait_time = backoff_factor**attempt
logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
time.sleep(wait_time)
attempt += 1
raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")
def init_space(full_init: bool = True):
"""Initializes the application space, loading only necessary data."""
if full_init:
# These downloads only occur on full initialization
try:
download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
except Exception:
restart_space()
# Always retrieve the leaderboard DataFrame
leaderboard_dataset = datasets.load_dataset(AGGREGATED_REPO, "default", split="train")
leaderboard_df = get_leaderboard_df(
leaderboard_dataset=leaderboard_dataset,
cols=COLS,
benchmark_cols=BENCHMARK_COLS,
)
# Evaluation queue DataFrame retrieval is independent of initialization detail level
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
return leaderboard_df, eval_queue_dfs
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
# This controls whether a full initialization should be performed.
do_full_init = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
leaderboard_df, eval_queue_dfs = init_space(full_init=do_full_init)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
# Data processing for plots now only on demand in the respective Gradio tab
#def load_and_create_plots():
# plot_df = create_plot_df(create_scores_df(leaderboard_df))
# return plot_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = Leaderboard(
value=leaderboard_df,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.fullname.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(
AutoEvalColumn.still_on_hub.name, type="boolean", label="Private or deleted", default=True
),
ColumnFilter(
AutoEvalColumn.merged.name, type="boolean", label="Contains a merge/moerge", default=True
),
ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False),
ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True),
],
bool_checkboxgroup_label="Hide models",
)
#with gr.TabItem("π Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
# with gr.Row():
# with gr.Column():
# plot_df = load_and_create_plots()
# chart = create_metric_plot_obj(
# plot_df,
# [AutoEvalColumn.average.name],
# title="Average of Top Scores and Human Baseline Over Time (from last update)",
# )
# gr.Plot(value=chart, min_width=500)
# with gr.Column():
# plot_df = load_and_create_plots()
# chart = create_metric_plot_obj(
# plot_df,
# BENCHMARK_COLS,
# title="Top Scores and Human Baseline Over Time (from last update)",
# )
# gr.Plot(value=chart, min_width=500)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("βFAQ", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit ", elem_id="llm-benchmark-tab-table", id=5):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=ModelType.FT.to_str(" : "),
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
demo.queue(default_concurrency_limit=40).launch()
|