Spaces:
Running
Running
File size: 223,153 Bytes
7b9da4a 0db91c1 805099a e2366f7 805099a 0db91c1 e2366f7 805099a 0db91c1 805099a e2366f7 805099a e2366f7 805099a 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 805099a 0db91c1 e2366f7 805099a 0db91c1 e2366f7 7b9da4a 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 7b9da4a 83730d1 35c0681 0c961d6 e2366f7 0db91c1 348de6e 0db91c1 7b9da4a 0db91c1 616dd44 7b9da4a 0db91c1 7b9da4a d6b96dc 7b9da4a d6b96dc 7b9da4a e2366f7 0c961d6 d6b96dc 0c961d6 e2366f7 7b9da4a 0db91c1 7b9da4a e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 7b9da4a b927143 7b9da4a b927143 7b9da4a b927143 7b9da4a b927143 7b9da4a b927143 0db91c1 7b9da4a e2366f7 7b9da4a b927143 0db91c1 7b9da4a 0db91c1 7b9da4a 0db91c1 7b9da4a 0db91c1 e2366f7 0db91c1 e2366f7 7b9da4a 0c961d6 7b9da4a 0db91c1 805099a 7b9da4a 805099a 7b9da4a 0db91c1 7b9da4a 0c961d6 7b9da4a 0db91c1 7b9da4a 805099a 0c961d6 e2366f7 e3cd24c e2366f7 0db91c1 e2366f7 0db91c1 7b9da4a e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 7b9da4a 0c961d6 0db91c1 805099a 0db91c1 7b9da4a e3cd24c e2366f7 7b9da4a 360cf0d 0db91c1 360cf0d 0db91c1 e2366f7 360cf0d e2366f7 267a582 35c0681 e2366f7 0db91c1 e2366f7 0db91c1 7b9da4a e3cd24c 7b9da4a e2366f7 7b9da4a 0db91c1 360cf0d 7b9da4a e2366f7 7b9da4a e3cd24c 7b9da4a 0db91c1 360cf0d 1ae3242 360cf0d 4834aaf 360cf0d 11bee8e 360cf0d 11bee8e 360cf0d a4ca640 360cf0d 0a1a0fd 360cf0d 7b9da4a e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 7b9da4a e3cd24c 0c961d6 7b9da4a 0db91c1 7b9da4a 0db91c1 7b9da4a e2366f7 0db91c1 e2366f7 7b9da4a e3cd24c 7b9da4a 0db91c1 7b9da4a 0db91c1 6881cac 012529d 805099a 7b9da4a e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0c961d6 a01c107 0db91c1 35c0681 0db91c1 e2366f7 35c0681 e2366f7 35c0681 e2366f7 35c0681 0db91c1 35c0681 0db91c1 35c0681 e2366f7 0db91c1 e2366f7 35c0681 0db91c1 a01c107 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 35c0681 e2366f7 35c0681 e2366f7 35c0681 0db91c1 35c0681 e2366f7 35c0681 0db91c1 35c0681 e2366f7 e3cd24c 4834aaf 0db91c1 35c0681 0c961d6 e2366f7 0db91c1 e2366f7 2db874e 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 0db91c1 0c961d6 0db91c1 0c961d6 0db91c1 0c961d6 0db91c1 1ae3242 0db91c1 a01c107 0db91c1 e2366f7 0db91c1 7b9da4a e2366f7 7b9da4a e2366f7 7b9da4a d6b96dc e2366f7 4834aaf e2366f7 0db91c1 e2366f7 7b9da4a 805099a e3cd24c 7b9da4a e2366f7 7b9da4a 0db91c1 7b9da4a e3cd24c 1ae3242 0c961d6 0db91c1 0c961d6 e2366f7 0c961d6 7b9da4a 805099a 7b9da4a 0db91c1 7b9da4a 0db91c1 7b9da4a e2366f7 7b9da4a 0db91c1 e2366f7 46119b6 e2366f7 a01c107 e2366f7 7b9da4a e2366f7 7b9da4a 805099a e2366f7 0db91c1 e3cd24c 805099a a01c107 7b9da4a 805099a a01c107 7b9da4a 805099a e2366f7 7b9da4a 805099a 35c0681 7b9da4a 805099a 35c0681 7b9da4a 805099a 35c0681 7b9da4a 805099a 0db91c1 805099a 35c0681 805099a 7b9da4a 805099a 35c0681 7b9da4a 805099a 35c0681 805099a 7b9da4a 805099a 35c0681 7b9da4a 805099a 35c0681 805099a 7b9da4a 805099a 35c0681 7b9da4a 805099a e2366f7 7b9da4a 0db91c1 7b9da4a e3cd24c e2366f7 7b9da4a e3cd24c 35c0681 7b9da4a e2366f7 0db91c1 e2366f7 7b9da4a 0db91c1 e2366f7 7b9da4a e2366f7 0db91c1 e2366f7 7b9da4a 805099a 7b9da4a e2366f7 7b9da4a 805099a 7b9da4a 4700771 c8eaa51 e2366f7 7b9da4a e3abb9a e2366f7 0db91c1 e2366f7 0db91c1 e2366f7 c8eaa51 e2366f7 0db91c1 e2366f7 38ed81a e2366f7 0db91c1 adada7e 0db91c1 adada7e 0db91c1 e2366f7 adada7e e2366f7 7b9da4a 0db91c1 e2366f7 7b9da4a f112b98 7b9da4a e2366f7 7b9da4a e2366f7 7b9da4a 0db91c1 7b9da4a e2366f7 7b9da4a e2366f7 0db91c1 e2366f7 7b9da4a e2366f7 7b9da4a e2366f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 |
#!/usr/bin/env python3
# Std Lib Imports
import argparse
import asyncio
import atexit
import configparser
from datetime import datetime
import hashlib
import json
import logging
import os
from pathlib import Path
import platform
import re
import shutil
import signal
import sqlite3
import subprocess
import sys
import time
import unicodedata
from multiprocessing import process
from typing import Callable, Dict, List, Optional, Tuple
from urllib.parse import urlparse, parse_qs, urlencode, urlunparse
import webbrowser
import zipfile
# 3rd-Party Module Imports
from bs4 import BeautifulSoup
import gradio as gr
import nltk
from playwright.async_api import async_playwright
import requests
from requests.exceptions import RequestException
import trafilatura
import yt_dlp
# OpenAI Tokenizer support
from openai import OpenAI
from tqdm import tqdm
import tiktoken
# Other Tokenizers
from transformers import GPT2Tokenizer
#######################
# Logging Setup
#
log_level = "DEBUG"
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s')
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
#############
# Global variables setup
custom_prompt = None
#
#
#######################
#######################
# Function Sections
#
abc_xyz = """
Database Setup
Config Loading
System Checks
DataBase Functions
Processing Paths and local file handling
Video Download/Handling
Audio Transcription
Diarization
Chunking-related Techniques & Functions
Tokenization-related Techniques & Functions
Summarizers
Gradio UI
Main
"""
#
#
#######################
#######################
#
# TL/DW: Too Long Didn't Watch
#
# Project originally created by https://github.com/the-crypt-keeper
# Modifications made by https://github.com/rmusser01
# All credit to the original authors, I've just glued shit together.
#
#
# Usage:
#
# Download Audio only from URL -> Transcribe audio:
# python summarize.py https://www.youtube.com/watch?v=4nd1CDZP21s`
#
# Download Audio+Video from URL -> Transcribe audio from Video:**
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s`
#
# Download Audio only from URL -> Transcribe audio -> Summarize using (`anthropic`/`cohere`/`openai`/`llama` (llama.cpp)/`ooba` (oobabooga/text-gen-webui)/`kobold` (kobold.cpp)/`tabby` (Tabbyapi)) API:**
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s -api <your choice of API>` - Make sure to put your API key into `config.txt` under the appropriate API variable
#
# Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:**
# python summarize.py ./local/file_on_your/system --api_name <API_name>`
#
# Run it as a WebApp**
# python summarize.py -gui` - This requires you to either stuff your API keys into the `config.txt` file, or pass them into the app every time you want to use it.
# Can be helpful for setting up a shared instance, but not wanting people to perform inference on your server.
#
#######################
#######################
# Random issues I've encountered and how I solved them:
# 1. Something about cuda nn library missing, even though cuda is installed...
# https://github.com/tensorflow/tensorflow/issues/54784 - Basically, installing zlib made it go away. idk.
# Or https://github.com/SYSTRAN/faster-whisper/issues/85
#
# 2. ERROR: Could not install packages due to an OSError: [WinError 2] The system cannot find the file specified: 'C:\\Python312\\Scripts\\dateparser-download.exe' -> 'C:\\Python312\\Scripts\\dateparser-download.exe.deleteme'
# Resolved through adding --user to the pip install command
#
# 3. ?
#
#######################
#######################
# DB Setup
# Handled by SQLite_DB.py
#######################
######################
# Global Variables
global local_llm_model, \
userOS, \
processing_choice, \
segments, \
detail_level_number, \
summary, \
audio_file, \
detail_level
process = None
#######################
# Config loading
#
# Read configuration from file
config = configparser.ConfigParser()
config.read('config.txt')
# API Keys
anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None)
logging.debug(f"Loaded Anthropic API Key: {anthropic_api_key}")
cohere_api_key = config.get('API', 'cohere_api_key', fallback=None)
logging.debug(f"Loaded cohere API Key: {cohere_api_key}")
groq_api_key = config.get('API', 'groq_api_key', fallback=None)
logging.debug(f"Loaded groq API Key: {groq_api_key}")
openai_api_key = config.get('API', 'openai_api_key', fallback=None)
logging.debug(f"Loaded openAI Face API Key: {openai_api_key}")
huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None)
logging.debug(f"Loaded HuggingFace Face API Key: {huggingface_api_key}")
openrouter_api_key = config.get('Local-API', 'openrouter', fallback=None)
logging.debug(f"Loaded OpenRouter API Key: {openrouter_api_key}")
# Models
anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229')
cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus')
groq_model = config.get('API', 'groq_model', fallback='llama3-70b-8192')
openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo')
huggingface_model = config.get('API', 'huggingface_model', fallback='CohereForAI/c4ai-command-r-plus')
openrouter_model = config.get('API', 'openrouter_model', fallback='microsoft/wizardlm-2-8x22b')
# Local-Models
kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate')
kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='')
llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions')
llama_api_key = config.get('Local-API', 'llama_api_key', fallback='')
ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions')
ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='')
tabby_api_IP = config.get('Local-API', 'tabby_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate')
tabby_api_key = config.get('Local-API', 'tabby_api_key', fallback=None)
vllm_api_url = config.get('Local-API', 'vllm_api_IP', fallback='http://127.0.0.1:500/api/v1/chat/completions')
vllm_api_key = config.get('Local-API', 'vllm_api_key', fallback=None)
# Retrieve output paths from the configuration file
output_path = config.get('Paths', 'output_path', fallback='results')
# Retrieve processing choice from the configuration file
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
# Log file
# logging.basicConfig(filename='debug-runtime.log', encoding='utf-8', level=logging.DEBUG)
#
#
#######################
#######################
# System Startup Notice
#
# Dirty hack - sue me. - FIXME - fix this...
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
whisper_models = ["small", "medium", "small.en", "medium.en"]
source_languages = {
"en": "English",
"zh": "Chinese",
"de": "German",
"es": "Spanish",
"ru": "Russian",
"ko": "Korean",
"fr": "French"
}
source_language_list = [key[0] for key in source_languages.items()]
def print_hello():
print(r"""_____ _ ________ _ _
|_ _|| | / /| _ \| | | | _
| | | | / / | | | || | | |(_)
| | | | / / | | | || |/\| |
| | | |____ / / | |/ / \ /\ / _
\_/ \_____//_/ |___/ \/ \/ (_)
_ _
| | | |
| |_ ___ ___ | | ___ _ __ __ _
| __| / _ \ / _ \ | | / _ \ | '_ \ / _` |
| |_ | (_) || (_) | | || (_) || | | || (_| | _
\__| \___/ \___/ |_| \___/ |_| |_| \__, |( )
__/ ||/
|___/
_ _ _ _ _ _ _
| |(_) | | ( )| | | | | |
__| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__
/ _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \
| (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | |
\__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_|
""")
time.sleep(1)
return
#
#
#######################################################################################################################
########################################################################################################################
# DB Setup
#
# 1. platform_check()
# 2. cuda_check()
# 3. decide_cpugpu()
# 4. check_ffmpeg()
# 5. download_ffmpeg()
#
#######################
#######################
# DB Functions
#
# create_tables()
# add_keyword()
# delete_keyword()
# add_keyword()
# add_media_with_keywords()
# search_db()
# format_results()
# search_and_display()
# export_to_csv()
# is_valid_url()
# is_valid_date()
#
########################################################################################################################
########################################################################################################################
# Processing Paths and local file handling
#
# Function List
# 1. read_paths_from_file(file_path)
# 2. process_path(path)
# 3. process_local_file(file_path)
# 4. read_paths_from_file(file_path: str) -> List[str]
#
#
########################################################################################################################
#######################################################################################################################
# Online Article Extraction / Handling
#
# Article_Extractor_Lib.py
#########################################
# Article Extraction Library
# This library is used to handle scraping and extraction of articles from web pages.
# Currently, uses a combination of beatifulsoup4 and trafilatura to extract article text.
# Firecrawl would be a better option for this, but it is not yet implemented.
####
####################
# Function List
#
# 1. get_page_title(url)
# 2. get_article_text(url)
# 3. get_article_title(article_url_arg)
#
####################
# Import necessary libraries
import os
import logging
import huggingface_hub
import tokenizers
import torchvision
import transformers
# 3rd-Party Imports
import asyncio
import playwright
from playwright.async_api import async_playwright
from bs4 import BeautifulSoup
import requests
import trafilatura
# Import Local
def get_page_title(url: str) -> str:
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
title_tag = soup.find('title')
return title_tag.string.strip() if title_tag else "Untitled"
except requests.RequestException as e:
logging.error(f"Error fetching page title: {e}")
return "Untitled"
def get_artice_title(article_url_arg: str) -> str:
# Use beautifulsoup to get the page title - Really should be using ytdlp for this....
article_title = get_page_title(article_url_arg)
def scrape_article(url):
async def fetch_html(url: str) -> str:
async with async_playwright() as p:
browser = await p.chromium.launch(headless=True)
context = await browser.new_context(
user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3")
page = await context.new_page()
await page.goto(url)
await page.wait_for_load_state("networkidle") # Wait for the network to be idle
content = await page.content()
await browser.close()
return content
def extract_article_data(html: str) -> dict:
downloaded = trafilatura.extract(html, include_comments=False, include_tables=False, include_images=False)
if downloaded:
metadata = trafilatura.extract_metadata(html)
if metadata:
return {
'title': metadata.title if metadata.title else 'N/A',
'author': metadata.author if metadata.author else 'N/A',
'content': downloaded,
'date': metadata.date if metadata.date else 'N/A',
}
else:
print("Metadata extraction failed.")
return None
else:
print("Content extraction failed.")
return None
def convert_html_to_markdown(html: str) -> str:
soup = BeautifulSoup(html, 'html.parser')
# Convert each paragraph to markdown
for para in soup.find_all('p'):
para.append('\n') # Add a newline at the end of each paragraph for markdown separation
# Use .get_text() with separator to keep paragraph separation
text = soup.get_text(separator='\n\n')
return text
async def fetch_and_extract_article(url: str):
html = await fetch_html(url)
print("HTML Content:", html[:500]) # Print first 500 characters of the HTML for inspection
article_data = extract_article_data(html)
if article_data:
article_data['content'] = convert_html_to_markdown(article_data['content'])
return article_data
else:
return None
# Using asyncio.run to handle event loop creation and execution
article_data = asyncio.run(fetch_and_extract_article(url))
return article_data
#
#
#######################################################################################################################
#
#
# Article_Summarization_Lib.py
# Import necessary libraries
import datetime
from datetime import datetime
import json
import os
import logging
# 3rd-Party Imports
import bs4
import huggingface_hub
import tokenizers
import torchvision
import transformers
# Local Imports
def ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date, custom_prompt):
try:
# Check if content is not empty or whitespace
if not content.strip():
raise ValueError("Content is empty.")
db = Database()
create_tables()
keyword_list = keywords.split(',') if keywords else ["default"]
keyword_str = ', '.join(keyword_list)
# Set default values for missing fields
url = url or 'Unknown'
title = title or 'Unknown'
author = author or 'Unknown'
keywords = keywords or 'default'
summary = summary or 'No summary available'
ingestion_date = ingestion_date or datetime.datetime.now().strftime('%Y-%m-%d')
# Log the values of all fields before calling add_media_with_keywords
logging.debug(f"URL: {url}")
logging.debug(f"Title: {title}")
logging.debug(f"Author: {author}")
logging.debug(f"Content: {content[:50]}... (length: {len(content)})") # Log first 50 characters of content
logging.debug(f"Keywords: {keywords}")
logging.debug(f"Summary: {summary}")
logging.debug(f"Ingestion Date: {ingestion_date}")
logging.debug(f"Custom Prompt: {custom_prompt}")
# Check if any required field is empty and log the specific missing field
if not url:
logging.error("URL is missing.")
raise ValueError("URL is missing.")
if not title:
logging.error("Title is missing.")
raise ValueError("Title is missing.")
if not content:
logging.error("Content is missing.")
raise ValueError("Content is missing.")
if not keywords:
logging.error("Keywords are missing.")
raise ValueError("Keywords are missing.")
if not summary:
logging.error("Summary is missing.")
raise ValueError("Summary is missing.")
if not ingestion_date:
logging.error("Ingestion date is missing.")
raise ValueError("Ingestion date is missing.")
if not custom_prompt:
logging.error("Custom prompt is missing.")
raise ValueError("Custom prompt is missing.")
# Add media with keywords to the database
result = add_media_with_keywords(
url=url,
title=title,
media_type='article',
content=content,
keywords=keyword_str or "article_default",
prompt=custom_prompt or None,
summary=summary or "No summary generated",
transcription_model=None, # or some default value if applicable
author=author or 'Unknown',
ingestion_date=ingestion_date
)
return result
except Exception as e:
logging.error(f"Failed to ingest article to the database: {e}")
return str(e)
def scrape_and_summarize(url, custom_prompt_arg, api_name, api_key, keywords, custom_article_title):
# Step 1: Scrape the article
article_data = scrape_article(url)
print(f"Scraped Article Data: {article_data}") # Debugging statement
if not article_data:
return "Failed to scrape the article."
# Use the custom title if provided, otherwise use the scraped title
title = custom_article_title.strip() if custom_article_title else article_data.get('title', 'Untitled')
author = article_data.get('author', 'Unknown')
content = article_data.get('content', '')
ingestion_date = datetime.now().strftime('%Y-%m-%d')
print(f"Title: {title}, Author: {author}, Content Length: {len(content)}") # Debugging statement
# Custom prompt for the article
article_custom_prompt = custom_prompt_arg or "Summarize this article."
# Step 2: Summarize the article
summary = None
if api_name:
logging.debug(f"Article_Summarizer: Summarization being performed by {api_name}")
# Sanitize filename for saving the JSON file
sanitized_title = sanitize_filename(title)
json_file_path = os.path.join("Results", f"{sanitized_title}_segments.json")
with open(json_file_path, 'w') as json_file:
json.dump([{'text': content}], json_file, indent=2)
try:
if api_name.lower() == 'openai':
openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', fallback=None)
logging.debug(f"Article_Summarizer: trying to summarize with openAI")
summary = summarize_with_openai(openai_api_key, json_file_path, article_custom_prompt)
elif api_name.lower() == "anthropic":
anthropic_api_key = api_key if api_key else config.get('API', 'anthropic_api_key', fallback=None)
logging.debug(f"Article_Summarizer: Trying to summarize with anthropic")
summary = summarize_with_claude(anthropic_api_key, json_file_path, anthropic_model,
custom_prompt_arg=article_custom_prompt)
elif api_name.lower() == "cohere":
cohere_api_key = api_key if api_key else config.get('API', 'cohere_api_key', fallback=None)
logging.debug(f"Article_Summarizer: Trying to summarize with cohere")
summary = summarize_with_cohere(cohere_api_key, json_file_path, cohere_model,
custom_prompt_arg=article_custom_prompt)
elif api_name.lower() == "groq":
groq_api_key = api_key if api_key else config.get('API', 'groq_api_key', fallback=None)
logging.debug(f"Article_Summarizer: Trying to summarize with Groq")
summary = summarize_with_groq(groq_api_key, json_file_path, groq_model,
custom_prompt_arg=article_custom_prompt)
elif api_name.lower() == "llama":
llama_token = api_key if api_key else config.get('API', 'llama_api_key', fallback=None)
llama_ip = llama_api_IP
logging.debug(f"Article_Summarizer: Trying to summarize with Llama.cpp")
summary = summarize_with_llama(llama_ip, json_file_path, llama_token, article_custom_prompt)
elif api_name.lower() == "kobold":
kobold_token = api_key if api_key else config.get('API', 'kobold_api_key', fallback=None)
kobold_ip = kobold_api_IP
logging.debug(f"Article_Summarizer: Trying to summarize with kobold.cpp")
summary = summarize_with_kobold(kobold_ip, json_file_path, kobold_token, article_custom_prompt)
elif api_name.lower() == "ooba":
ooba_token = api_key if api_key else config.get('API', 'ooba_api_key', fallback=None)
ooba_ip = ooba_api_IP
logging.debug(f"Article_Summarizer: Trying to summarize with oobabooga")
summary = summarize_with_oobabooga(ooba_ip, json_file_path, ooba_token, article_custom_prompt)
elif api_name.lower() == "tabbyapi":
tabbyapi_key = api_key if api_key else config.get('API', 'tabby_api_key', fallback=None)
tabbyapi_ip = tabby_api_IP
logging.debug(f"Article_Summarizer: Trying to summarize with tabbyapi")
tabby_model = summarize.llm_model
summary = summarize_with_tabbyapi(tabbyapi_key, tabbyapi_ip, json_file_path, tabby_model,
article_custom_prompt)
elif api_name.lower() == "vllm":
logging.debug(f"Article_Summarizer: Trying to summarize with VLLM")
summary = summarize_with_vllm(vllm_api_url, vllm_api_key, summarize.llm_model, json_file_path,
article_custom_prompt)
elif api_name.lower() == "huggingface":
huggingface_api_key = api_key if api_key else config.get('API', 'huggingface_api_key', fallback=None)
logging.debug(f"Article_Summarizer: Trying to summarize with huggingface")
summary = summarize_with_huggingface(huggingface_api_key, json_file_path, article_custom_prompt)
elif api_name.lower() == "openrouter":
openrouter_api_key = api_key if api_key else config.get('API', 'openrouter_api_key', fallback=None)
logging.debug(f"Article_Summarizer: Trying to summarize with openrouter")
summary = summarize_with_openrouter(openrouter_api_key, json_file_path, article_custom_prompt)
except requests.exceptions.ConnectionError as e:
logging.error(f"Connection error while trying to summarize with {api_name}: {str(e)}")
if summary:
logging.info(f"Article_Summarizer: Summary generated using {api_name} API")
save_summary_to_file(summary, json_file_path)
else:
summary = "Summary not available"
logging.warning(f"Failed to generate summary using {api_name} API")
else:
summary = "Article Summarization: No API provided for summarization."
print(f"Summary: {summary}") # Debugging statement
# Step 3: Ingest the article into the database
ingestion_result = ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date,
article_custom_prompt)
return f"Title: {title}\nAuthor: {author}\nSummary: {summary}\nIngestion Result: {ingestion_result}"
def ingest_unstructured_text(text, custom_prompt, api_name, api_key, keywords, custom_article_title):
title = custom_article_title.strip() if custom_article_title else "Unstructured Text"
author = "Unknown"
ingestion_date = datetime.now().strftime('%Y-%m-%d')
# Summarize the unstructured text
if api_name:
json_file_path = f"Results/{title.replace(' ', '_')}_segments.json"
with open(json_file_path, 'w') as json_file:
json.dump([{'text': text}], json_file, indent=2)
if api_name.lower() == 'openai':
summary = summarize_with_openai(api_key, json_file_path, custom_prompt)
# Add other APIs as needed
else:
summary = "Unsupported API."
else:
summary = "No API provided for summarization."
# Ingest the unstructured text into the database
ingestion_result = ingest_article_to_db('Unstructured Text', title, author, text, keywords, summary, ingestion_date,
custom_prompt)
return f"Title: {title}\nSummary: {summary}\nIngestion Result: {ingestion_result}"
#
#
#######################################################################################################################
#
#
#######################################################################################################################
#######################################################################################################################
# Video Download/Handling
# Video-DL-Ingestion-Lib
#
# Function List
# 1. get_video_info(url)
# 2. create_download_directory(title)
# 3. sanitize_filename(title)
# 4. normalize_title(title)
# 5. get_youtube(video_url)
# 6. get_playlist_videos(playlist_url)
# 7. download_video(video_url, download_path, info_dict, download_video_flag)
# 8. save_to_file(video_urls, filename)
# 9. save_summary_to_file(summary, file_path)
# 10. process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter, download_video, download_audio, rolling_summarization, detail_level, question_box, keywords, ) # FIXME - UPDATE
#
#
#######################################################################################################################
#######################################################################################################################
# Audio Transcription
#
# Function List
# 1. convert_to_wav(video_file_path, offset=0, overwrite=False)
# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False)
# Audio_Transcription_Lib.py
#########################################
# Transcription Library
# This library is used to perform transcription of audio files.
# Currently, uses faster_whisper for transcription.
#
####
import configparser
####################
# Function List
#
# 1. convert_to_wav(video_file_path, offset=0, overwrite=False)
# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False)
#
####################
# Import necessary libraries to run solo for testing
import json
import logging
import os
import sys
import subprocess
import time
# Import Local
#######################################################################################################################
# Function Definitions
#
# Convert video .m4a into .wav using ffmpeg
# ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav"
# https://www.gyan.dev/ffmpeg/builds/
#
# os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
def convert_to_wav(video_file_path, offset=0, overwrite=False):
out_path = os.path.splitext(video_file_path)[0] + ".wav"
if os.path.exists(out_path) and not overwrite:
print(f"File '{out_path}' already exists. Skipping conversion.")
logging.info(f"Skipping conversion as file already exists: {out_path}")
return out_path
print("Starting conversion process of .m4a to .WAV")
out_path = os.path.splitext(video_file_path)[0] + ".wav"
try:
if os.name == "nt":
logging.debug("ffmpeg being ran on windows")
if sys.platform.startswith('win'):
ffmpeg_cmd = ".\\Bin\\ffmpeg.exe"
logging.debug(f"ffmpeg_cmd: {ffmpeg_cmd}")
else:
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
command = [
ffmpeg_cmd, # Assuming the working directory is correctly set where .\Bin exists
"-ss", "00:00:00", # Start at the beginning of the video
"-i", video_file_path,
"-ar", "16000", # Audio sample rate
"-ac", "1", # Number of audio channels
"-c:a", "pcm_s16le", # Audio codec
out_path
]
try:
# Redirect stdin from null device to prevent ffmpeg from waiting for input
with open(os.devnull, 'rb') as null_file:
result = subprocess.run(command, stdin=null_file, text=True, capture_output=True)
if result.returncode == 0:
logging.info("FFmpeg executed successfully")
logging.debug("FFmpeg output: %s", result.stdout)
else:
logging.error("Error in running FFmpeg")
logging.error("FFmpeg stderr: %s", result.stderr)
raise RuntimeError(f"FFmpeg error: {result.stderr}")
except Exception as e:
logging.error("Error occurred - ffmpeg doesn't like windows")
raise RuntimeError("ffmpeg failed")
elif os.name == "posix":
os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
else:
raise RuntimeError("Unsupported operating system")
logging.info("Conversion to WAV completed: %s", out_path)
except subprocess.CalledProcessError as e:
logging.error("Error executing FFmpeg command: %s", str(e))
raise RuntimeError("Error converting video file to WAV")
except Exception as e:
logging.error("speech-to-text: Error transcribing audio: %s", str(e))
return {"error": str(e)}
return out_path
# Transcribe .wav into .segments.json
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False):
logging.info('speech-to-text: Loading faster_whisper model: %s', whisper_model)
from faster_whisper import WhisperModel
# Retrieve processing choice from the configuration file
config = configparser.ConfigParser()
config.read('config.txt')
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
model = WhisperModel(whisper_model, device=f"{processing_choice}")
time_start = time.time()
if audio_file_path is None:
raise ValueError("speech-to-text: No audio file provided")
logging.info("speech-to-text: Audio file path: %s", audio_file_path)
try:
_, file_ending = os.path.splitext(audio_file_path)
out_file = audio_file_path.replace(file_ending, ".segments.json")
prettified_out_file = audio_file_path.replace(file_ending, ".segments_pretty.json")
if os.path.exists(out_file):
logging.info("speech-to-text: Segments file already exists: %s", out_file)
with open(out_file) as f:
global segments
segments = json.load(f)
return segments
logging.info('speech-to-text: Starting transcription...')
options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter)
transcribe_options = dict(task="transcribe", **options)
segments_raw, info = model.transcribe(audio_file_path, **transcribe_options)
segments = []
for segment_chunk in segments_raw:
chunk = {
"Time_Start": segment_chunk.start,
"Time_End": segment_chunk.end,
"Text": segment_chunk.text
}
logging.debug("Segment: %s", chunk)
segments.append(chunk)
logging.info("speech-to-text: Transcription completed with faster_whisper")
# Save prettified JSON
with open(prettified_out_file, 'w') as f:
json.dump(segments, f, indent=2)
# Save non-prettified JSON
with open(out_file, 'w') as f:
json.dump(segments, f)
except Exception as e:
logging.error("speech-to-text: Error transcribing audio: %s", str(e))
raise RuntimeError("speech-to-text: Error transcribing audio")
return segments
#
#
#######################################################################################################################
# Chunk Lib
#
#
# from transformers import GPT2Tokenizer
# import nltk
# import re
#
# # FIXME - Make sure it only downloads if it already exists, and does a check first.
# # Ensure NLTK data is downloaded
# def ntlk_prep():
# nltk.download('punkt')
#
# # Load GPT2 tokenizer
# tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
#
#
# def load_document(file_path):
# with open(file_path, 'r') as file:
# text = file.read()
# return re.sub('\s+', ' ', text).strip()
#
#
# # Chunk based on maximum number of words, using ' ' (space) as a delimiter
# def chunk_text_by_words(text, max_words=300):
# words = text.split()
# chunks = [' '.join(words[i:i + max_words]) for i in range(0, len(words), max_words)]
# return chunks
#
#
# # Chunk based on sentences, not exceeding a max amount, using nltk
# def chunk_text_by_sentences(text, max_sentences=10):
# sentences = nltk.tokenize.sent_tokenize(text)
# chunks = [' '.join(sentences[i:i + max_sentences]) for i in range(0, len(sentences), max_sentences)]
# return chunks
#
#
# # Chunk text by paragraph, marking paragraphs by (delimiter) '\n\n'
# def chunk_text_by_paragraphs(text, max_paragraphs=5):
# paragraphs = text.split('\n\n')
# chunks = ['\n\n'.join(paragraphs[i:i + max_paragraphs]) for i in range(0, len(paragraphs), max_paragraphs)]
# return chunks
#
#
# # Naive chunking based on token count
# def chunk_text_by_tokens(text, max_tokens=1000):
# tokens = tokenizer.encode(text)
# chunks = [tokenizer.decode(tokens[i:i + max_tokens]) for i in range(0, len(tokens), max_tokens)]
# return chunks
#
#
# # Hybrid approach, chunk each sentence while ensuring total token size does not exceed a maximum number
# def chunk_text_hybrid(text, max_tokens=1000):
# sentences = nltk.tokenize.sent_tokenize(text)
# chunks = []
# current_chunk = []
# current_length = 0
#
# for sentence in sentences:
# tokens = tokenizer.encode(sentence)
# if current_length + len(tokens) <= max_tokens:
# current_chunk.append(sentence)
# current_length += len(tokens)
# else:
# chunks.append(' '.join(current_chunk))
# current_chunk = [sentence]
# current_length = len(tokens)
#
# if current_chunk:
# chunks.append(' '.join(current_chunk))
#
# return chunks
# Sample text for testing
sample_text = """
Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence
concerned with the interactions between computers and human language, in particular how to program computers
to process and analyze large amounts of natural language data. The result is a computer capable of "understanding"
the contents of documents, including the contextual nuances of the language within them. The technology can then
accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.
Challenges in natural language processing frequently involve speech recognition, natural language understanding,
and natural language generation.
Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled
"Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence.
"""
# Example usage of different chunking methods
# print("Chunking by words:")
# print(chunk_text_by_words(sample_text, max_words=50))
#
# print("\nChunking by sentences:")
# print(chunk_text_by_sentences(sample_text, max_sentences=2))
#
# print("\nChunking by paragraphs:")
# print(chunk_text_by_paragraphs(sample_text, max_paragraphs=1))
#
# print("\nChunking by tokens:")
# print(chunk_text_by_tokens(sample_text, max_tokens=50))
#
# print("\nHybrid chunking:")
# print(chunk_text_hybrid(sample_text, max_tokens=50))
#
#
#######################################################################################################################
#######################################################################################################################
# Diarization
#
# Function List 1. speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding",
# embedding_size=512, num_speakers=0)
# Local_File_Processing_Lib.py
#########################################
# Local File Processing and File Path Handling Library
# This library is used to handle processing local filepaths and URLs.
# It checks for the OS, the availability of the GPU, and the availability of the ffmpeg executable.
# If the GPU is available, it asks the user if they would like to use it for processing.
# If ffmpeg is not found, it asks the user if they would like to download it.
# The script will exit if the user chooses not to download ffmpeg.
####
####################
# Function List
#
# 1. read_paths_from_file(file_path)
# 2. process_path(path)
# 3. process_local_file(file_path)
# 4. read_paths_from_file(file_path: str) -> List[str]
#
####################
# Import necessary libraries
import os
import logging
# Local_LLM_Inference_Engine_Lib.py
#########################################
# Local LLM Inference Engine Library
# This library is used to handle downloading, configuring, and launching the Local LLM Inference Engine
# via (llama.cpp via llamafile)
#
#
####
import atexit
import hashlib
####################
# Function List
#
# 1. download_latest_llamafile(repo, asset_name_prefix, output_filename)
# 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5)
# 3. verify_checksum(file_path, expected_checksum)
# 4. cleanup_process()
# 5. signal_handler(sig, frame)
# 6. local_llm_function()
# 7. launch_in_new_terminal_windows(executable, args)
# 8. launch_in_new_terminal_linux(executable, args)
# 9. launch_in_new_terminal_mac(executable, args)
#
####################
# Import necessary libraries
import json
import logging
from multiprocessing import Process as MpProcess
import requests
import sys
import os
# Import 3rd-pary Libraries
import gradio as gr
from tqdm import tqdm
# Local_Summarization_Lib.py
#########################################
# Local Summarization Library
# This library is used to perform summarization with a 'local' inference engine.
#
####
####################
# Function List
#
# 1. summarize_with_local_llm(file_path, custom_prompt_arg)
# 2. summarize_with_llama(api_url, file_path, token, custom_prompt)
# 3. summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt)
# 4. summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt)
# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg)
# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt)
# 7. save_summary_to_file(summary, file_path)
#
#
####################
# Import necessary libraries
import os
import logging
from typing import Callable
# Old_Chunking_Lib.py
#########################################
# Old Chunking Library
# This library is used to handle chunking of text for summarization.
#
####
####################
# Function List
#
# 1. chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]
# 2. summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, words_per_second: int) -> str
# 3. get_chat_completion(messages, model='gpt-4-turbo')
# 4. chunk_on_delimiter(input_string: str, max_tokens: int, delimiter: str) -> List[str]
# 5. combine_chunks_with_no_minimum(chunks: List[str], max_tokens: int, chunk_delimiter="\n\n", header: Optional[str] = None, add_ellipsis_for_overflow=False) -> Tuple[List[str], List[int]]
# 6. rolling_summarize(text: str, detail: float = 0, model: str = 'gpt-4-turbo', additional_instructions: Optional[str] = None, minimum_chunk_size: Optional[int] = 500, chunk_delimiter: str = ".", summarize_recursively=False, verbose=False)
# 7. chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]
# 8. summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int, words_per_second: int) -> str
#
####################
# Import necessary libraries
import os
from typing import Optional
# Import 3rd party
import openai
from openai import OpenAI
import csv
import logging
import os
import re
import sqlite3
import time
from contextlib import contextmanager
from datetime import datetime
from typing import List, Tuple
import gradio as gr
import pandas as pd
# Import Local
# Summarization_General_Lib.py
#########################################
# General Summarization Library
# This library is used to perform summarization.
#
####
import configparser
####################
# Function List
#
# 1. extract_text_from_segments(segments: List[Dict]) -> str
# 2. summarize_with_openai(api_key, file_path, custom_prompt_arg)
# 3. summarize_with_claude(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
# 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg)
# 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg)
#
#
####################
# Import necessary libraries
import os
import logging
import time
import requests
from typing import List, Dict
import json
import configparser
from requests import RequestException
# System_Checks_Lib.py
#########################################
# System Checks Library
# This library is used to check the system for the necessary dependencies to run the script.
# It checks for the OS, the availability of the GPU, and the availability of the ffmpeg executable.
# If the GPU is available, it asks the user if they would like to use it for processing.
# If ffmpeg is not found, it asks the user if they would like to download it.
# The script will exit if the user chooses not to download ffmpeg.
####
####################
# Function List
#
# 1. platform_check()
# 2. cuda_check()
# 3. decide_cpugpu()
# 4. check_ffmpeg()
# 5. download_ffmpeg()
#
####################
# Import necessary libraries
import os
import platform
import subprocess
import shutil
import zipfile
import logging
# Video_DL_Ingestion_Lib.py
#########################################
# Video Downloader and Ingestion Library
# This library is used to handle downloading videos from YouTube and other platforms.
# It also handles the ingestion of the videos into the database.
# It uses yt-dlp to extract video information and download the videos.
####
####################
# Function List
#
# 1. get_video_info(url)
# 2. create_download_directory(title)
# 3. sanitize_filename(title)
# 4. normalize_title(title)
# 5. get_youtube(video_url)
# 6. get_playlist_videos(playlist_url)
# 7. download_video(video_url, download_path, info_dict, download_video_flag)
# 8. save_to_file(video_urls, filename)
# 9. save_summary_to_file(summary, file_path)
# 10. process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter, download_video, download_audio, rolling_summarization, detail_level, question_box, keywords, chunk_summarization, chunk_duration_input, words_per_second_input)
#
#
####################
# Import necessary libraries to run solo for testing
from datetime import datetime
import json
import logging
import os
import re
import subprocess
import sys
import unicodedata
# 3rd-Party Imports
import yt_dlp
server_mode = False
share_public = False
#######################################################################################################################
# Function Definitions
#
def get_video_info(url: str) -> dict:
ydl_opts = {
'quiet': True,
'no_warnings': True,
'skip_download': True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
try:
info_dict = ydl.extract_info(url, download=False)
return info_dict
except Exception as e:
logging.error(f"Error extracting video info: {e}")
return None
def create_download_directory(title):
base_dir = "Results"
# Remove characters that are illegal in Windows filenames and normalize
safe_title = normalize_title(title)
logging.debug(f"{title} successfully normalized")
session_path = os.path.join(base_dir, safe_title)
if not os.path.exists(session_path):
os.makedirs(session_path, exist_ok=True)
logging.debug(f"Created directory for downloaded video: {session_path}")
else:
logging.debug(f"Directory already exists for downloaded video: {session_path}")
return session_path
def sanitize_filename(title, max_length=255):
# Remove invalid path characters
title = re.sub(r'[\\/*?:"<>|]', "", title)
# Truncate long titles to avoid filesystem errors
return title[:max_length].rstrip()
def normalize_title(title):
# Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters
title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii')
title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?',
'').replace(
'<', '').replace('>', '').replace('|', '')
return title
def get_youtube(video_url):
ydl_opts = {
'format': 'bestaudio[ext=m4a]',
'noplaylist': False,
'quiet': True,
'extract_flat': True
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
logging.debug("About to extract youtube info")
info_dict = ydl.extract_info(video_url, download=False)
logging.debug("Youtube info successfully extracted")
return info_dict
def get_playlist_videos(playlist_url):
ydl_opts = {
'extract_flat': True,
'skip_download': True,
'quiet': True
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(playlist_url, download=False)
if 'entries' in info:
video_urls = [entry['url'] for entry in info['entries']]
playlist_title = info['title']
return video_urls, playlist_title
else:
print("No videos found in the playlist.")
return [], None
def download_video(video_url, download_path, info_dict, download_video_flag):
global video_file_path, ffmpeg_path
global audio_file_path
# Normalize Video Title name
logging.debug("About to normalize downloaded video title")
normalized_video_title = normalize_title(info_dict['title'])
video_file_path = os.path.join(download_path, f"{normalized_video_title}.{info_dict['ext']}")
# Check for existence of video file
if os.path.exists(video_file_path):
logging.info(f"Video file already exists: {video_file_path}")
return video_file_path
# Setup path handling for ffmpeg on different OSs
if sys.platform.startswith('win'):
ffmpeg_path = os.path.join(os.getcwd(), 'Bin', 'ffmpeg.exe')
elif sys.platform.startswith('linux'):
ffmpeg_path = 'ffmpeg'
elif sys.platform.startswith('darwin'):
ffmpeg_path = 'ffmpeg'
download_video_flag = True
if download_video_flag:
video_file_path = os.path.join(download_path, f"{normalized_video_title}.mp4")
# Dirty hack until I figure out whats going on.... FIXME
download_video_flag = True
# Set options for video and audio
ydl_opts_video = {
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]',
'outtmpl': video_file_path,
'ffmpeg_location': ffmpeg_path
}
retry_attempts = 3
for attempt in range(retry_attempts):
try:
with yt_dlp.YoutubeDL(ydl_opts_video) as ydl:
logging.debug("yt_dlp: About to download video with youtube-dl")
ydl.download([video_url])
logging.debug("yt_dlp: Video successfully downloaded with youtube-dl")
if os.path.exists(video_file_path):
return video_file_path
else:
logging.error("yt_dlp: Video file not found after download")
return None
except Exception as e:
logging.error(f"yt_dlp: Error downloading video: {e}")
if attempt < retry_attempts - 1:
logging.info(f"Retrying download... (Attempt {attempt + 1}/{retry_attempts})")
time.sleep(2) # Wait a bit before retrying
else:
logging.error("yt_dlp: Failed to download video after multiple attempts")
return None
else:
logging.debug("Download video flag is set to False")
return None
def save_to_file(video_urls, filename):
with open(filename, 'w') as file:
file.write('\n'.join(video_urls))
print(f"Video URLs saved to {filename}")
#
#
#######################################################################################################################
#
def openai_tokenize(text: str) -> List[str]:
encoding = tiktoken.encoding_for_model('gpt-4-turbo')
return encoding.encode(text)
def platform_check():
global userOS
if platform.system() == "Linux":
print("Linux OS detected \n Running Linux appropriate commands")
userOS = "Linux"
elif platform.system() == "Windows":
print("Windows OS detected \n Running Windows appropriate commands")
userOS = "Windows"
else:
print("Other OS detected \n Maybe try running things manually?")
exit()
# Check for NVIDIA GPU and CUDA availability
def cuda_check():
global processing_choice
try:
# Run nvidia-smi to capture its output
nvidia_smi_output = subprocess.check_output("nvidia-smi", shell=True).decode()
# Look for CUDA version in the output
if "CUDA Version" in nvidia_smi_output:
cuda_version = next(
(line.split(":")[-1].strip() for line in nvidia_smi_output.splitlines() if "CUDA Version" in line),
"Not found")
print(f"NVIDIA GPU with CUDA Version {cuda_version} is available.")
processing_choice = "cuda"
else:
print("CUDA is not installed or configured correctly.")
processing_choice = "cpu"
except subprocess.CalledProcessError as e:
print(f"Failed to run 'nvidia-smi': {str(e)}")
processing_choice = "cpu"
except Exception as e:
print(f"An error occurred: {str(e)}")
processing_choice = "cpu"
# Optionally, check for the CUDA_VISIBLE_DEVICES env variable as an additional check
if "CUDA_VISIBLE_DEVICES" in os.environ:
print("CUDA_VISIBLE_DEVICES is set:", os.environ["CUDA_VISIBLE_DEVICES"])
else:
print("CUDA_VISIBLE_DEVICES not set.")
# Ask user if they would like to use either their GPU or their CPU for transcription
def decide_cpugpu():
global processing_choice
processing_input = input("Would you like to use your GPU or CPU for transcription? (1/cuda)GPU/(2/cpu)CPU): ")
if processing_choice == "cuda" and (processing_input.lower() == "cuda" or processing_input == "1"):
print("You've chosen to use the GPU.")
logging.debug("GPU is being used for processing")
processing_choice = "cuda"
elif processing_input.lower() == "cpu" or processing_input == "2":
print("You've chosen to use the CPU.")
logging.debug("CPU is being used for processing")
processing_choice = "cpu"
else:
print("Invalid choice. Please select either GPU or CPU.")
# check for existence of ffmpeg
def check_ffmpeg():
if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")):
logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder")
pass
else:
logging.debug("ffmpeg not installed on the local system/in local PATH")
print(
"ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of "
"choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/")
if userOS == "Windows":
download_ffmpeg()
elif userOS == "Linux":
print(
"You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg',"
"'dnf install ffmpeg' or 'pacman', etc.")
else:
logging.debug("running an unsupported OS")
print("You're running an unspported/Un-tested OS")
exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)")
if exit_script == "y" or "yes" or "1":
exit()
# Download ffmpeg
def download_ffmpeg():
user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ")
if user_choice.lower() in ['yes', 'y', '1']:
print("Downloading ffmpeg")
url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip"
response = requests.get(url)
if response.status_code == 200:
print("Saving ffmpeg zip file")
logging.debug("Saving ffmpeg zip file")
zip_path = "ffmpeg-release-essentials.zip"
with open(zip_path, 'wb') as file:
file.write(response.content)
logging.debug("Extracting the 'ffmpeg.exe' file from the zip")
print("Extracting ffmpeg.exe from zip file to '/Bin' folder")
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
# Find the ffmpeg.exe file within the zip
ffmpeg_path = None
for file_info in zip_ref.infolist():
if file_info.filename.endswith("ffmpeg.exe"):
ffmpeg_path = file_info.filename
break
if ffmpeg_path is None:
logging.error("ffmpeg.exe not found in the zip file.")
print("ffmpeg.exe not found in the zip file.")
return
logging.debug("checking if the './Bin' folder exists, creating if not")
bin_folder = "Bin"
if not os.path.exists(bin_folder):
logging.debug("Creating a folder for './Bin', it didn't previously exist")
os.makedirs(bin_folder)
logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder")
zip_ref.extract(ffmpeg_path, path=bin_folder)
logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder")
src_path = os.path.join(bin_folder, ffmpeg_path)
dst_path = os.path.join(bin_folder, "ffmpeg.exe")
shutil.move(src_path, dst_path)
logging.debug("Removing ffmpeg zip file")
print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)")
os.remove(zip_path)
logging.debug("ffmpeg.exe has been downloaded and extracted to the './Bin' folder.")
print("ffmpeg.exe has been successfully downloaded and extracted to the './Bin' folder.")
else:
logging.error("Failed to download the zip file.")
print("Failed to download the zip file.")
else:
logging.debug("User chose to not download ffmpeg")
print("ffmpeg will not be downloaded.")
#
#
#######################################################################################################################
# Read configuration from file
config = configparser.ConfigParser()
config.read('../config.txt')
# API Keys
anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None)
logging.debug(f"Loaded Anthropic API Key: {anthropic_api_key}")
cohere_api_key = config.get('API', 'cohere_api_key', fallback=None)
logging.debug(f"Loaded cohere API Key: {cohere_api_key}")
groq_api_key = config.get('API', 'groq_api_key', fallback=None)
logging.debug(f"Loaded groq API Key: {groq_api_key}")
openai_api_key = config.get('API', 'openai_api_key', fallback=None)
logging.debug(f"Loaded openAI Face API Key: {openai_api_key}")
huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None)
logging.debug(f"Loaded HuggingFace Face API Key: {huggingface_api_key}")
openrouter_api_token = config.get('API', 'openrouter_api_token', fallback=None)
logging.debug(f"Loaded OpenRouter API Key: {openrouter_api_token}")
# Models
anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229')
cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus')
groq_model = config.get('API', 'groq_model', fallback='llama3-70b-8192')
openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo')
huggingface_model = config.get('API', 'huggingface_model', fallback='CohereForAI/c4ai-command-r-plus')
openrouter_model = config.get('API', 'openrouter_model', fallback='mistralai/mistral-7b-instruct:free')
#######################################################################################################################
# Function Definitions
#
# FIXME
# def extract_text_from_segments(segments: List[Dict]) -> str:
# """Extract text from segments."""
# return " ".join([segment['text'] for segment in segments])
def extract_text_from_segments(segments):
logging.debug(f"Segments received: {segments}")
logging.debug(f"Type of segments: {type(segments)}")
text = ""
for segment in segments:
logging.debug(f"Current segment: {segment}")
logging.debug(f"Type of segment: {type(segment)}")
text += segment['Text'] + " "
return text.strip()
def summarize_with_openai(api_key, json_file_path, custom_prompt_arg):
try:
logging.debug("openai: Loading json data for summarization")
with open(json_file_path, 'r') as file:
data = json.load(file)
logging.debug(f"openai: Loaded data: {data}")
logging.debug(f"openai: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("openai: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries, proceed with summarization
segments = data
open_ai_model = openai_model or 'gpt-4-turbo'
logging.debug("openai: Extracting text from the segments")
text = extract_text_from_segments(segments)
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
logging.debug(f"openai: API Key is: {api_key}")
logging.debug("openai: Preparing data + prompt for submittal")
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
data = {
"model": open_ai_model,
"messages": [
{
"role": "system",
"content": "You are a professional summarizer."
},
{
"role": "user",
"content": openai_prompt
}
],
"max_tokens": 8192, # Adjust tokens as needed
"temperature": 0.1
}
logging.debug("openai: Posting request")
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("openai: Summarization successful")
print("openai: Summarization successful.")
return summary
else:
logging.warning("openai: Summary not found in the response data")
return "openai: Summary not available"
else:
logging.debug("openai: Summarization failed")
print("openai: Failed to process summary:", response.text)
return "openai: Failed to process summary"
except Exception as e:
logging.debug("openai: Error in processing: %s", str(e))
print("openai: Error occurred while processing summary with openai:", str(e))
return "openai: Error occurred while processing summary"
def summarize_with_claude(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5):
try:
logging.debug("anthropic: Loading JSON data")
with open(file_path, 'r') as file:
segments = json.load(file)
logging.debug("anthropic: Extracting text from the segments file")
text = extract_text_from_segments(segments)
headers = {
'x-api-key': api_key,
'anthropic-version': '2023-06-01',
'Content-Type': 'application/json'
}
anthropic_prompt = custom_prompt_arg # Sanitize the custom prompt
logging.debug(f"anthropic: Prompt is {anthropic_prompt}")
user_message = {
"role": "user",
"content": f"{text} \n\n\n\n{anthropic_prompt}"
}
data = {
"model": model,
"max_tokens": 4096, # max _possible_ tokens to return
"messages": [user_message],
"stop_sequences": ["\n\nHuman:"],
"temperature": 0.1,
"top_k": 0,
"top_p": 1.0,
"metadata": {
"user_id": "example_user_id",
},
"stream": False,
"system": "You are a professional summarizer."
}
for attempt in range(max_retries):
try:
logging.debug("anthropic: Posting request to API")
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
# Check if the status code indicates success
if response.status_code == 200:
logging.debug("anthropic: Post submittal successful")
response_data = response.json()
try:
summary = response_data['content'][0]['text'].strip()
logging.debug("anthropic: Summarization successful")
print("Summary processed successfully.")
return summary
except (IndexError, KeyError) as e:
logging.debug("anthropic: Unexpected data in response")
print("Unexpected response format from Claude API:", response.text)
return None
elif response.status_code == 500: # Handle internal server error specifically
logging.debug("anthropic: Internal server error")
print("Internal server error from API. Retrying may be necessary.")
time.sleep(retry_delay)
else:
logging.debug(
f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}")
print(f"Failed to process summary, status code {response.status_code}: {response.text}")
return None
except RequestException as e:
logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}")
if attempt < max_retries - 1:
time.sleep(retry_delay)
else:
return f"anthropic: Network error: {str(e)}"
except FileNotFoundError as e:
logging.error(f"anthropic: File not found: {file_path}")
return f"anthropic: File not found: {file_path}"
except json.JSONDecodeError as e:
logging.error(f"anthropic: Invalid JSON format in file: {file_path}")
return f"anthropic: Invalid JSON format in file: {file_path}"
except Exception as e:
logging.error(f"anthropic: Error in processing: {str(e)}")
return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}"
# Summarize with Cohere
def summarize_with_cohere(api_key, file_path, model, custom_prompt_arg):
try:
logging.debug("cohere: Loading JSON data")
with open(file_path, 'r') as file:
segments = json.load(file)
logging.debug(f"cohere: Extracting text from segments file")
text = extract_text_from_segments(segments)
headers = {
'accept': 'application/json',
'content-type': 'application/json',
'Authorization': f'Bearer {api_key}'
}
cohere_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
logging.debug("cohere: Prompt being sent is {cohere_prompt}")
data = {
"chat_history": [
{"role": "USER", "message": cohere_prompt}
],
"message": "Please provide a summary.",
"model": model,
"connectors": [{"id": "web-search"}]
}
logging.debug("cohere: Submitting request to API endpoint")
print("cohere: Submitting request to API endpoint")
response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
if 'text' in response_data:
summary = response_data['text'].strip()
logging.debug("cohere: Summarization successful")
print("Summary processed successfully.")
return summary
else:
logging.error("Expected data not found in API response.")
return "Expected data not found in API response."
else:
logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}")
print(f"Failed to process summary, status code {response.status_code}: {response.text}")
return f"cohere: API request failed: {response.text}"
except Exception as e:
logging.error("cohere: Error in processing: %s", str(e))
return f"cohere: Error occurred while processing summary with Cohere: {str(e)}"
# https://console.groq.com/docs/quickstart
def summarize_with_groq(api_key, file_path, model, custom_prompt_arg):
try:
logging.debug("groq: Loading JSON data")
with open(file_path, 'r') as file:
segments = json.load(file)
logging.debug(f"groq: Extracting text from segments file")
text = extract_text_from_segments(segments)
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
logging.debug("groq: Prompt being sent is {groq_prompt}")
data = {
"messages": [
{
"role": "user",
"content": groq_prompt
}
],
"model": model
}
logging.debug("groq: Submitting request to API endpoint")
print("groq: Submitting request to API endpoint")
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("groq: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error("Expected data not found in API response.")
return "Expected data not found in API response."
else:
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
return f"groq: API request failed: {response.text}"
except Exception as e:
logging.error("groq: Error in processing: %s", str(e))
return f"groq: Error occurred while processing summary with groq: {str(e)}"
def summarize_with_openrouter(api_key, json_file_path, custom_prompt_arg):
import requests
import json
global openrouter_model
config = configparser.ConfigParser()
file_path = 'config.txt'
# Check if the file exists in the specified path
if os.path.exists(file_path):
config.read(file_path)
elif os.path.exists('config.txt'): # Check in the current directory
config.read('../config.txt')
else:
print("config.txt not found in the specified path or current directory.")
openrouter_api_token = config.get('API', 'openrouter_api_token', fallback=None)
if openrouter_model is None:
openrouter_model = "mistralai/mistral-7b-instruct:free"
openrouter_prompt = f"{json_file_path} \n\n\n\n{custom_prompt_arg}"
try:
logging.debug("openrouter: Submitting request to API endpoint")
print("openrouter: Submitting request to API endpoint")
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {openrouter_api_token}",
},
data=json.dumps({
"model": f"{openrouter_model}",
"messages": [
{"role": "user", "content": openrouter_prompt}
]
})
)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("openrouter: Summarization successful")
print("openrouter: Summarization successful.")
return summary
else:
logging.error("openrouter: Expected data not found in API response.")
return "openrouter: Expected data not found in API response."
else:
logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}")
return f"openrouter: API request failed: {response.text}"
except Exception as e:
logging.error("openrouter: Error in processing: %s", str(e))
return f"openrouter: Error occurred while processing summary with openrouter: {str(e)}"
def summarize_with_huggingface(api_key, file_path, custom_prompt_arg):
logging.debug(f"huggingface: Summarization process starting...")
try:
logging.debug("huggingface: Loading json data for summarization")
with open(file_path, 'r') as file:
segments = json.load(file)
logging.debug("huggingface: Extracting text from the segments")
logging.debug(f"huggingface: Segments: {segments}")
text = ' '.join([segment['text'] for segment in segments])
print(f"huggingface: lets make sure the HF api key exists...\n\t {api_key}")
headers = {
"Authorization": f"Bearer {api_key}"
}
model = "microsoft/Phi-3-mini-128k-instruct"
API_URL = f"https://api-inference.huggingface.co/models/{model}"
huggingface_prompt = f"{text}\n\n\n\n{custom_prompt_arg}"
logging.debug("huggingface: Prompt being sent is {huggingface_prompt}")
data = {
"inputs": text,
"parameters": {"max_length": 512, "min_length": 100} # You can adjust max_length and min_length as needed
}
print(f"huggingface: lets make sure the HF api key is the same..\n\t {huggingface_api_key}")
logging.debug("huggingface: Submitting request...")
response = requests.post(API_URL, headers=headers, json=data)
if response.status_code == 200:
summary = response.json()[0]['summary_text']
logging.debug("huggingface: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error(f"huggingface: Summarization failed with status code {response.status_code}: {response.text}")
return f"Failed to process summary, status code {response.status_code}: {response.text}"
except Exception as e:
logging.error("huggingface: Error in processing: %s", str(e))
print(f"Error occurred while processing summary with huggingface: {str(e)}")
return None
# FIXME
# This is here for gradio authentication
# Its just not setup.
# def same_auth(username, password):
# return username == password
#
#
#######################################################################################################################
# Set up logging
#logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
#logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Custom exceptions
class DatabaseError(Exception):
pass
class InputError(Exception):
pass
# Database connection function with connection pooling
class Database:
def __init__(self, db_name=None):
self.db_name = db_name or os.getenv('DB_NAME', 'media_summary.db')
self.pool = []
self.pool_size = 10
@contextmanager
def get_connection(self):
retry_count = 5
retry_delay = 1
conn = None
while retry_count > 0:
try:
conn = self.pool.pop() if self.pool else sqlite3.connect(self.db_name, check_same_thread=False)
yield conn
self.pool.append(conn)
return
except sqlite3.OperationalError as e:
if 'database is locked' in str(e):
logging.warning(f"Database is locked, retrying in {retry_delay} seconds...")
retry_count -= 1
time.sleep(retry_delay)
else:
raise DatabaseError(f"Database error: {e}")
except Exception as e:
raise DatabaseError(f"Unexpected error: {e}")
finally:
# Ensure the connection is returned to the pool even on failure
if conn:
self.pool.append(conn)
raise DatabaseError("Database is locked and retries have been exhausted")
def execute_query(self, query: str, params: Tuple = ()) -> None:
with self.get_connection() as conn:
try:
cursor = conn.cursor()
cursor.execute(query, params)
conn.commit()
except sqlite3.Error as e:
raise DatabaseError(f"Database error: {e}, Query: {query}")
db = Database()
# Function to create tables with the new media schema
def create_tables() -> None:
table_queries = [
'''
CREATE TABLE IF NOT EXISTS Media (
id INTEGER PRIMARY KEY AUTOINCREMENT,
url TEXT,
title TEXT NOT NULL,
type TEXT NOT NULL,
content TEXT,
author TEXT,
ingestion_date TEXT,
prompt TEXT,
summary TEXT,
transcription_model TEXT
)
''',
'''
CREATE TABLE IF NOT EXISTS Keywords (
id INTEGER PRIMARY KEY AUTOINCREMENT,
keyword TEXT NOT NULL UNIQUE
)
''',
'''
CREATE TABLE IF NOT EXISTS MediaKeywords (
id INTEGER PRIMARY KEY AUTOINCREMENT,
media_id INTEGER NOT NULL,
keyword_id INTEGER NOT NULL,
FOREIGN KEY (media_id) REFERENCES Media(id),
FOREIGN KEY (keyword_id) REFERENCES Keywords(id)
)
''',
'''
CREATE TABLE IF NOT EXISTS MediaVersion (
id INTEGER PRIMARY KEY AUTOINCREMENT,
media_id INTEGER NOT NULL,
version INTEGER NOT NULL,
prompt TEXT,
summary TEXT,
created_at TEXT NOT NULL,
FOREIGN KEY (media_id) REFERENCES Media(id)
)
''',
'''
CREATE TABLE IF NOT EXISTS MediaModifications (
id INTEGER PRIMARY KEY AUTOINCREMENT,
media_id INTEGER NOT NULL,
prompt TEXT,
summary TEXT,
modification_date TEXT,
FOREIGN KEY (media_id) REFERENCES Media(id)
)
''',
'''
CREATE VIRTUAL TABLE IF NOT EXISTS media_fts USING fts5(title, content);
''',
'''
CREATE VIRTUAL TABLE IF NOT EXISTS keyword_fts USING fts5(keyword);
''',
'''
CREATE INDEX IF NOT EXISTS idx_media_title ON Media(title);
''',
'''
CREATE INDEX IF NOT EXISTS idx_media_type ON Media(type);
''',
'''
CREATE INDEX IF NOT EXISTS idx_media_author ON Media(author);
''',
'''
CREATE INDEX IF NOT EXISTS idx_media_ingestion_date ON Media(ingestion_date);
''',
'''
CREATE INDEX IF NOT EXISTS idx_keywords_keyword ON Keywords(keyword);
''',
'''
CREATE INDEX IF NOT EXISTS idx_mediakeywords_media_id ON MediaKeywords(media_id);
''',
'''
CREATE INDEX IF NOT EXISTS idx_mediakeywords_keyword_id ON MediaKeywords(keyword_id);
''',
'''
CREATE INDEX IF NOT EXISTS idx_media_version_media_id ON MediaVersion(media_id);
'''
]
for query in table_queries:
db.execute_query(query)
create_tables()
#######################################################################################################################
# Keyword-related Functions
#
# Function to add a keyword
def add_keyword(keyword: str) -> int:
keyword = keyword.strip().lower()
with db.get_connection() as conn:
cursor = conn.cursor()
try:
cursor.execute('INSERT OR IGNORE INTO Keywords (keyword) VALUES (?)', (keyword,))
cursor.execute('SELECT id FROM Keywords WHERE keyword = ?', (keyword,))
keyword_id = cursor.fetchone()[0]
cursor.execute('INSERT OR IGNORE INTO keyword_fts (rowid, keyword) VALUES (?, ?)', (keyword_id, keyword))
logging.info(f"Keyword '{keyword}' added to keyword_fts with ID: {keyword_id}")
conn.commit()
return keyword_id
except sqlite3.IntegrityError as e:
logging.error(f"Integrity error adding keyword: {e}")
raise DatabaseError(f"Integrity error adding keyword: {e}")
except sqlite3.Error as e:
logging.error(f"Error adding keyword: {e}")
raise DatabaseError(f"Error adding keyword: {e}")
# Function to delete a keyword
def delete_keyword(keyword: str) -> str:
keyword = keyword.strip().lower()
with db.get_connection() as conn:
cursor = conn.cursor()
try:
cursor.execute('SELECT id FROM Keywords WHERE keyword = ?', (keyword,))
keyword_id = cursor.fetchone()
if keyword_id:
cursor.execute('DELETE FROM Keywords WHERE keyword = ?', (keyword,))
cursor.execute('DELETE FROM keyword_fts WHERE rowid = ?', (keyword_id[0],))
conn.commit()
return f"Keyword '{keyword}' deleted successfully."
else:
return f"Keyword '{keyword}' not found."
except sqlite3.Error as e:
raise DatabaseError(f"Error deleting keyword: {e}")
# Function to add media with keywords
def add_media_with_keywords(url, title, media_type, content, keywords, prompt, summary, transcription_model, author, ingestion_date):
# Set default values for missing fields
url = url or 'Unknown'
title = title or 'Untitled'
media_type = media_type or 'Unknown'
content = content or 'No content available'
keywords = keywords or 'default'
prompt = prompt or 'No prompt available'
summary = summary or 'No summary available'
transcription_model = transcription_model or 'Unknown'
author = author or 'Unknown'
ingestion_date = ingestion_date or datetime.now().strftime('%Y-%m-%d')
# Ensure URL is valid
if not is_valid_url(url):
url = 'localhost'
if media_type not in ['document', 'video', 'article']:
raise InputError("Invalid media type. Allowed types: document, video, article.")
if ingestion_date and not is_valid_date(ingestion_date):
raise InputError("Invalid ingestion date format. Use YYYY-MM-DD.")
if not ingestion_date:
ingestion_date = datetime.now().strftime('%Y-%m-%d')
# Split keywords correctly by comma
keyword_list = [keyword.strip().lower() for keyword in keywords.split(',')]
logging.info(f"URL: {url}")
logging.info(f"Title: {title}")
logging.info(f"Media Type: {media_type}")
logging.info(f"Keywords: {keywords}")
logging.info(f"Content: {content}")
logging.info(f"Prompt: {prompt}")
logging.info(f"Summary: {summary}")
logging.info(f"Author: {author}")
logging.info(f"Ingestion Date: {ingestion_date}")
logging.info(f"Transcription Model: {transcription_model}")
try:
with db.get_connection() as conn:
cursor = conn.cursor()
# Initialize keyword_list
keyword_list = [keyword.strip().lower() for keyword in keywords.split(',')]
# Check if media already exists
cursor.execute('SELECT id FROM Media WHERE url = ?', (url,))
existing_media = cursor.fetchone()
if existing_media:
media_id = existing_media[0]
logger.info(f"Existing media found with ID: {media_id}")
# Insert new prompt and summary into MediaModifications
cursor.execute('''
INSERT INTO MediaModifications (media_id, prompt, summary, modification_date)
VALUES (?, ?, ?, ?)
''', (media_id, prompt, summary, ingestion_date))
logger.info("New summary and prompt added to MediaModifications")
else:
logger.info("New media entry being created")
# Insert new media item
cursor.execute('''
INSERT INTO Media (url, title, type, content, author, ingestion_date, transcription_model)
VALUES (?, ?, ?, ?, ?, ?, ?)
''', (url, title, media_type, content, author, ingestion_date, transcription_model))
media_id = cursor.lastrowid
# Insert keywords and associate with media item
for keyword in keyword_list:
keyword = keyword.strip().lower()
cursor.execute('INSERT OR IGNORE INTO Keywords (keyword) VALUES (?)', (keyword,))
cursor.execute('SELECT id FROM Keywords WHERE keyword = ?', (keyword,))
keyword_id = cursor.fetchone()[0]
cursor.execute('INSERT OR IGNORE INTO MediaKeywords (media_id, keyword_id) VALUES (?, ?)', (media_id, keyword_id))
cursor.execute('INSERT INTO media_fts (rowid, title, content) VALUES (?, ?, ?)', (media_id, title, content))
# Also insert the initial prompt and summary into MediaModifications
cursor.execute('''
INSERT INTO MediaModifications (media_id, prompt, summary, modification_date)
VALUES (?, ?, ?, ?)
''', (media_id, prompt, summary, ingestion_date))
conn.commit()
# Insert initial version of the prompt and summary
add_media_version(media_id, prompt, summary)
return f"Media '{title}' added successfully with keywords: {', '.join(keyword_list)}"
except sqlite3.IntegrityError as e:
logger.error(f"Integrity Error: {e}")
raise DatabaseError(f"Integrity error adding media with keywords: {e}")
except sqlite3.Error as e:
logger.error(f"SQL Error: {e}")
raise DatabaseError(f"Error adding media with keywords: {e}")
except Exception as e:
logger.error(f"Unexpected Error: {e}")
raise DatabaseError(f"Unexpected error: {e}")
def fetch_all_keywords() -> List[str]:
try:
with db.get_connection() as conn:
cursor = conn.cursor()
cursor.execute('SELECT keyword FROM Keywords')
keywords = [row[0] for row in cursor.fetchall()]
return keywords
except sqlite3.Error as e:
raise DatabaseError(f"Error fetching keywords: {e}")
def keywords_browser_interface():
keywords = fetch_all_keywords()
return gr.Markdown("\n".join(f"- {keyword}" for keyword in keywords))
def display_keywords():
try:
keywords = fetch_all_keywords()
return "\n".join(keywords) if keywords else "No keywords found."
except DatabaseError as e:
return str(e)
def export_keywords_to_csv():
try:
keywords = fetch_all_keywords()
if not keywords:
return None, "No keywords found in the database."
filename = "keywords.csv"
with open(filename, 'w', newline='', encoding='utf-8') as file:
writer = csv.writer(file)
writer.writerow(["Keyword"])
for keyword in keywords:
writer.writerow([keyword])
return filename, f"Keywords exported to {filename}"
except Exception as e:
logger.error(f"Error exporting keywords to CSV: {e}")
return None, f"Error exporting keywords: {e}"
#
#
#######################################################################################################################
# Function to add a version of a prompt and summary
def add_media_version(media_id: int, prompt: str, summary: str) -> None:
try:
with db.get_connection() as conn:
cursor = conn.cursor()
# Get the current version number
cursor.execute('SELECT MAX(version) FROM MediaVersion WHERE media_id = ?', (media_id,))
current_version = cursor.fetchone()[0] or 0
# Insert the new version
cursor.execute('''
INSERT INTO MediaVersion (media_id, version, prompt, summary, created_at)
VALUES (?, ?, ?, ?, ?)
''', (media_id, current_version + 1, prompt, summary, datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
conn.commit()
except sqlite3.Error as e:
raise DatabaseError(f"Error adding media version: {e}")
# Function to search the database with advanced options, including keyword search and full-text search
def search_db(search_query: str, search_fields: List[str], keywords: str, page: int = 1, results_per_page: int = 10):
if page < 1:
raise ValueError("Page number must be 1 or greater.")
# Prepare keywords by splitting and trimming
keywords = [keyword.strip().lower() for keyword in keywords.split(',') if keyword.strip()]
with db.get_connection() as conn:
cursor = conn.cursor()
offset = (page - 1) * results_per_page
# Prepare the search conditions for general fields
search_conditions = []
params = []
for field in search_fields:
if search_query: # Ensure there's a search query before adding this condition
search_conditions.append(f"Media.{field} LIKE ?")
params.append(f'%{search_query}%')
# Prepare the conditions for keywords filtering
keyword_conditions = []
for keyword in keywords:
keyword_conditions.append(
f"EXISTS (SELECT 1 FROM MediaKeywords mk JOIN Keywords k ON mk.keyword_id = k.id WHERE mk.media_id = Media.id AND k.keyword LIKE ?)")
params.append(f'%{keyword}%')
# Combine all conditions
where_clause = " AND ".join(
search_conditions + keyword_conditions) if search_conditions or keyword_conditions else "1=1"
# Complete the query
query = f'''
SELECT DISTINCT Media.url, Media.title, Media.type, Media.content, Media.author, Media.ingestion_date, Media.prompt, Media.summary
FROM Media
WHERE {where_clause}
LIMIT ? OFFSET ?
'''
params.extend([results_per_page, offset])
cursor.execute(query, params)
results = cursor.fetchall()
return results
# Gradio function to handle user input and display results with pagination, with better feedback
def search_and_display(search_query, search_fields, keywords, page):
results = search_db(search_query, search_fields, keywords, page)
if isinstance(results, pd.DataFrame):
# Convert DataFrame to a list of tuples or lists
processed_results = results.values.tolist() # This converts DataFrame rows to lists
elif isinstance(results, list):
# Ensure that each element in the list is itself a list or tuple (not a dictionary)
processed_results = [list(item.values()) if isinstance(item, dict) else item for item in results]
else:
raise TypeError("Unsupported data type for results")
return processed_results
def display_details(index, results):
if index is None or results is None:
return "Please select a result to view details."
try:
# Ensure the index is an integer and access the row properly
index = int(index)
if isinstance(results, pd.DataFrame):
if index >= len(results):
return "Index out of range. Please select a valid index."
selected_row = results.iloc[index]
else:
# If results is not a DataFrame, but a list (assuming list of dicts)
selected_row = results[index]
except ValueError:
return "Index must be an integer."
except IndexError:
return "Index out of range. Please select a valid index."
# Build HTML output safely
details_html = f"""
<h3>{selected_row.get('Title', 'No Title')}</h3>
<p><strong>URL:</strong> {selected_row.get('URL', 'No URL')}</p>
<p><strong>Type:</strong> {selected_row.get('Type', 'No Type')}</p>
<p><strong>Author:</strong> {selected_row.get('Author', 'No Author')}</p>
<p><strong>Ingestion Date:</strong> {selected_row.get('Ingestion Date', 'No Date')}</p>
<p><strong>Prompt:</strong> {selected_row.get('Prompt', 'No Prompt')}</p>
<p><strong>Summary:</strong> {selected_row.get('Summary', 'No Summary')}</p>
<p><strong>Content:</strong> {selected_row.get('Content', 'No Content')}</p>
"""
return details_html
def get_details(index, dataframe):
if index is None or dataframe is None or index >= len(dataframe):
return "Please select a result to view details."
row = dataframe.iloc[index]
details = f"""
<h3>{row['Title']}</h3>
<p><strong>URL:</strong> {row['URL']}</p>
<p><strong>Type:</strong> {row['Type']}</p>
<p><strong>Author:</strong> {row['Author']}</p>
<p><strong>Ingestion Date:</strong> {row['Ingestion Date']}</p>
<p><strong>Prompt:</strong> {row['Prompt']}</p>
<p><strong>Summary:</strong> {row['Summary']}</p>
<p><strong>Content:</strong></p>
<pre>{row['Content']}</pre>
"""
return details
def format_results(results):
if not results:
return pd.DataFrame(columns=['URL', 'Title', 'Type', 'Content', 'Author', 'Ingestion Date', 'Prompt', 'Summary'])
df = pd.DataFrame(results, columns=['URL', 'Title', 'Type', 'Content', 'Author', 'Ingestion Date', 'Prompt', 'Summary'])
logging.debug(f"Formatted DataFrame: {df}")
return df
# Function to export search results to CSV with pagination
def export_to_csv(search_query: str, search_fields: List[str], keyword: str, page: int = 1, results_per_file: int = 1000):
try:
results = search_db(search_query, search_fields, keyword, page, results_per_file)
df = format_results(results)
filename = f'search_results_page_{page}.csv'
df.to_csv(filename, index=False)
return f"Results exported to {filename}"
except (DatabaseError, InputError) as e:
return str(e)
# Helper function to validate URL format
def is_valid_url(url: str) -> bool:
regex = re.compile(
r'^(?:http|ftp)s?://' # http:// or https://
r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' # domain...
r'localhost|' # localhost...
r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}|' # ...or ipv4
r'\[?[A-F0-9]*:[A-F0-9:]+\]?)' # ...or ipv6
r'(?::\d+)?' # optional port
r'(?:/?|[/?]\S+)$', re.IGNORECASE)
return re.match(regex, url) is not None
# Helper function to validate date format
def is_valid_date(date_string: str) -> bool:
try:
datetime.strptime(date_string, '%Y-%m-%d')
return True
except ValueError:
return False
#
#
#######################################################################################################################
#######################################################################################################################
# Functions to manage prompts DB
#
def create_prompts_db():
conn = sqlite3.connect('prompts.db')
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS Prompts (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL UNIQUE,
details TEXT,
system TEXT,
user TEXT
)
''')
conn.commit()
conn.close()
create_prompts_db()
def add_prompt(name, details, system, user=None):
try:
conn = sqlite3.connect('prompts.db')
cursor = conn.cursor()
cursor.execute('''
INSERT INTO Prompts (name, details, system, user)
VALUES (?, ?, ?, ?)
''', (name, details, system, user))
conn.commit()
conn.close()
return "Prompt added successfully."
except sqlite3.IntegrityError:
return "Prompt with this name already exists."
except sqlite3.Error as e:
return f"Database error: {e}"
def fetch_prompt_details(name):
conn = sqlite3.connect('prompts.db')
cursor = conn.cursor()
cursor.execute('''
SELECT details, system, user
FROM Prompts
WHERE name = ?
''', (name,))
result = cursor.fetchone()
conn.close()
return result
def list_prompts():
conn = sqlite3.connect('prompts.db')
cursor = conn.cursor()
cursor.execute('''
SELECT name
FROM Prompts
''')
results = cursor.fetchall()
conn.close()
return [row[0] for row in results]
def insert_prompt_to_db(title, description, system_prompt, user_prompt):
result = add_prompt(title, description, system_prompt, user_prompt)
return result
#
#
#######################################################################################################################
#######################################################################################################################
# Function Definitions
#
######### Words-per-second Chunking #########
def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]:
words = transcript.split()
words_per_chunk = chunk_duration * words_per_second
chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)]
return chunks
#def summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int,
# words_per_second: int) -> str:
# if api_name not in summarizers: # See 'summarizers' dict in the main script
# return f"Unsupported API: {api_name}"
# summarizer = summarizers[api_name]
# text = extract_text_from_segments(transcript)
# chunks = chunk_transcript(text, chunk_duration, words_per_second)
# summaries = []
# for chunk in chunks:
# if api_name == 'openai':
# # Ensure the correct model and prompt are passed
## summaries.append(summarizer(api_key, chunk, custom_prompt))
# else:
# summaries.append(summarizer(api_key, chunk))
#
# return "\n\n".join(summaries)
################## ####################
######### Token-size Chunking ######### FIXME - OpenAI only currently
# This is dirty and shameful and terrible. It should be replaced with a proper implementation.
# anyways lets get to it....
openai_api_key = "Fake_key" # FIXME
client = OpenAI(api_key=openai_api_key)
def get_chat_completion(messages, model='gpt-4-turbo'):
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0,
)
return response.choices[0].message.content
# This function chunks a text into smaller pieces based on a maximum token count and a delimiter
def chunk_on_delimiter(input_string: str,
max_tokens: int,
delimiter: str) -> List[str]:
chunks = input_string.split(delimiter)
combined_chunks, _, dropped_chunk_count = combine_chunks_with_no_minimum(
chunks, max_tokens, chunk_delimiter=delimiter, add_ellipsis_for_overflow=True)
if dropped_chunk_count > 0:
print(f"Warning: {dropped_chunk_count} chunks were dropped due to exceeding the token limit.")
combined_chunks = [f"{chunk}{delimiter}" for chunk in combined_chunks]
return combined_chunks
# This function combines text chunks into larger blocks without exceeding a specified token count.
# It returns the combined chunks, their original indices, and the number of dropped chunks due to overflow.
def combine_chunks_with_no_minimum(
chunks: List[str],
max_tokens: int,
chunk_delimiter="\n\n",
header: Optional[str] = None,
add_ellipsis_for_overflow=False,
) -> Tuple[List[str], List[int]]:
dropped_chunk_count = 0
output = [] # list to hold the final combined chunks
output_indices = [] # list to hold the indices of the final combined chunks
candidate = (
[] if header is None else [header]
) # list to hold the current combined chunk candidate
candidate_indices = []
for chunk_i, chunk in enumerate(chunks):
chunk_with_header = [chunk] if header is None else [header, chunk]
# FIXME MAKE NOT OPENAI SPECIFIC
if len(openai_tokenize(chunk_delimiter.join(chunk_with_header))) > max_tokens:
print(f"warning: chunk overflow")
if (
add_ellipsis_for_overflow
# FIXME MAKE NOT OPENAI SPECIFIC
and len(openai_tokenize(chunk_delimiter.join(candidate + ["..."]))) <= max_tokens
):
candidate.append("...")
dropped_chunk_count += 1
continue # this case would break downstream assumptions
# estimate token count with the current chunk added
# FIXME MAKE NOT OPENAI SPECIFIC
extended_candidate_token_count = len(openai_tokenize(chunk_delimiter.join(candidate + [chunk])))
# If the token count exceeds max_tokens, add the current candidate to output and start a new candidate
if extended_candidate_token_count > max_tokens:
output.append(chunk_delimiter.join(candidate))
output_indices.append(candidate_indices)
candidate = chunk_with_header # re-initialize candidate
candidate_indices = [chunk_i]
# otherwise keep extending the candidate
else:
candidate.append(chunk)
candidate_indices.append(chunk_i)
# add the remaining candidate to output if it's not empty
if (header is not None and len(candidate) > 1) or (header is None and len(candidate) > 0):
output.append(chunk_delimiter.join(candidate))
output_indices.append(candidate_indices)
return output, output_indices, dropped_chunk_count
def rolling_summarize(text: str,
detail: float = 0,
model: str = 'gpt-4-turbo',
additional_instructions: Optional[str] = None,
minimum_chunk_size: Optional[int] = 500,
chunk_delimiter: str = ".",
summarize_recursively=False,
verbose=False):
"""
Summarizes a given text by splitting it into chunks, each of which is summarized individually.
The level of detail in the summary can be adjusted, and the process can optionally be made recursive.
Parameters: - text (str): The text to be summarized. - detail (float, optional): A value between 0 and 1
indicating the desired level of detail in the summary. 0 leads to a higher level summary, and 1 results in a more
detailed summary. Defaults to 0. - model (str, optional): The model to use for generating summaries. Defaults to
'gpt-3.5-turbo'. - additional_instructions (Optional[str], optional): Additional instructions to provide to the
model for customizing summaries. - minimum_chunk_size (Optional[int], optional): The minimum size for text
chunks. Defaults to 500. - chunk_delimiter (str, optional): The delimiter used to split the text into chunks.
Defaults to ".". - summarize_recursively (bool, optional): If True, summaries are generated recursively,
using previous summaries for context. - verbose (bool, optional): If True, prints detailed information about the
chunking process.
Returns:
- str: The final compiled summary of the text.
The function first determines the number of chunks by interpolating between a minimum and a maximum chunk count
based on the `detail` parameter. It then splits the text into chunks and summarizes each chunk. If
`summarize_recursively` is True, each summary is based on the previous summaries, adding more context to the
summarization process. The function returns a compiled summary of all chunks.
"""
# check detail is set correctly
assert 0 <= detail <= 1
# interpolate the number of chunks based to get specified level of detail
max_chunks = len(chunk_on_delimiter(text, minimum_chunk_size, chunk_delimiter))
min_chunks = 1
num_chunks = int(min_chunks + detail * (max_chunks - min_chunks))
# adjust chunk_size based on interpolated number of chunks
# FIXME MAKE NOT OPENAI SPECIFIC
document_length = len(openai_tokenize(text))
chunk_size = max(minimum_chunk_size, document_length // num_chunks)
text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter)
if verbose:
print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.")
# FIXME MAKE NOT OPENAI SPECIFIC
print(f"Chunk lengths are {[len(openai_tokenize(x)) for x in text_chunks]}")
# set system message
system_message_content = "Rewrite this text in summarized form."
if additional_instructions is not None:
system_message_content += f"\n\n{additional_instructions}"
accumulated_summaries = []
for chunk in tqdm(text_chunks):
if summarize_recursively and accumulated_summaries:
# Creating a structured prompt for recursive summarization
accumulated_summaries_string = '\n\n'.join(accumulated_summaries)
user_message_content = f"Previous summaries:\n\n{accumulated_summaries_string}\n\nText to summarize next:\n\n{chunk}"
else:
# Directly passing the chunk for summarization without recursive context
user_message_content = chunk
# Constructing messages based on whether recursive summarization is applied
messages = [
{"role": "system", "content": system_message_content},
{"role": "user", "content": user_message_content}
]
# Assuming this function gets the completion and works as expected
response = get_chat_completion(messages, model=model)
accumulated_summaries.append(response)
# Compile final summary from partial summaries
global final_summary
final_summary = '\n\n'.join(accumulated_summaries)
return final_summary
#######################################
######### Words-per-second Chunking #########
# FIXME - WHole section needs to be re-written
def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]:
words = transcript.split()
words_per_chunk = chunk_duration * words_per_second
chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)]
return chunks
#
# FIXME - WHole section needs to be re-written
def summarize_with_detail_openai(text, detail, verbose=False):
summary_with_detail_variable = rolling_summarize(text, detail=detail, verbose=True)
print(len(openai_tokenize(summary_with_detail_variable)))
return summary_with_detail_variable
def summarize_with_detail_recursive_openai(text, detail, verbose=False):
summary_with_recursive_summarization = rolling_summarize(text, detail=detail, summarize_recursively=True)
print(summary_with_recursive_summarization)
#
#
#################################################################################
# Read configuration from file
config = configparser.ConfigParser()
config.read('../config.txt')
# Local-Models
kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate')
kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='')
llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions')
llama_api_key = config.get('Local-API', 'llama_api_key', fallback='')
ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions')
ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='')
tabby_api_IP = config.get('Local-API', 'tabby_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate')
tabby_api_key = config.get('Local-API', 'tabby_api_key', fallback=None)
vllm_api_url = config.get('Local-API', 'vllm_api_IP', fallback='http://127.0.0.1:500/api/v1/chat/completions')
vllm_api_key = config.get('Local-API', 'vllm_api_key', fallback=None)
#######################################################################################################################
# Function Definitions
#
def summarize_with_local_llm(file_path, custom_prompt_arg):
try:
logging.debug("Local LLM: Loading json data for summarization")
with open(file_path, 'r') as file:
segments = json.load(file)
logging.debug("Local LLM: Extracting text from the segments")
text = extract_text_from_segments(segments)
headers = {
'Content-Type': 'application/json'
}
logging.debug("Local LLM: Preparing data + prompt for submittal")
local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
data = {
"messages": [
{
"role": "system",
"content": "You are a professional summarizer."
},
{
"role": "user",
"content": local_llm_prompt
}
],
"max_tokens": 28000, # Adjust tokens as needed
}
logging.debug("Local LLM: Posting request")
response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("Local LLM: Summarization successful")
print("Local LLM: Summarization successful.")
return summary
else:
logging.warning("Local LLM: Summary not found in the response data")
return "Local LLM: Summary not available"
else:
logging.debug("Local LLM: Summarization failed")
print("Local LLM: Failed to process summary:", response.text)
return "Local LLM: Failed to process summary"
except Exception as e:
logging.debug("Local LLM: Error in processing: %s", str(e))
print("Error occurred while processing summary with Local LLM:", str(e))
return "Local LLM: Error occurred while processing summary"
def summarize_with_llama(api_url, file_path, token, custom_prompt):
try:
logging.debug("llama: Loading JSON data")
with open(file_path, 'r') as file:
segments = json.load(file)
logging.debug(f"llama: Extracting text from segments file")
text = extract_text_from_segments(segments) # Define this function to extract text properly
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
if len(token) > 5:
headers['Authorization'] = f'Bearer {token}'
llama_prompt = f"{text} \n\n\n\n{custom_prompt}"
logging.debug("llama: Prompt being sent is {llama_prompt}")
data = {
"prompt": llama_prompt
}
logging.debug("llama: Submitting request to API endpoint")
print("llama: Submitting request to API endpoint")
response = requests.post(api_url, headers=headers, json=data)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
# if 'X' in response_data:
logging.debug(response_data)
summary = response_data['content'].strip()
logging.debug("llama: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error(f"llama: API request failed with status code {response.status_code}: {response.text}")
return f"llama: API request failed: {response.text}"
except Exception as e:
logging.error("llama: Error in processing: %s", str(e))
return f"llama: Error occurred while processing summary with llama: {str(e)}"
# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate
def summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt):
try:
logging.debug("kobold: Loading JSON data")
with open(file_path, 'r') as file:
segments = json.load(file)
logging.debug(f"kobold: Extracting text from segments file")
text = extract_text_from_segments(segments)
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
kobold_prompt = f"{text} \n\n\n\n{custom_prompt}"
logging.debug("kobold: Prompt being sent is {kobold_prompt}")
# FIXME
# Values literally c/p from the api docs....
data = {
"max_context_length": 8096,
"max_length": 4096,
"prompt": f"{text}\n\n\n\n{custom_prompt}"
}
logging.debug("kobold: Submitting request to API endpoint")
print("kobold: Submitting request to API endpoint")
response = requests.post(api_url, headers=headers, json=data)
response_data = response.json()
logging.debug("kobold: API Response Data: %s", response_data)
if response.status_code == 200:
if 'results' in response_data and len(response_data['results']) > 0:
summary = response_data['results'][0]['text'].strip()
logging.debug("kobold: Summarization successful")
print("Summarization successful.")
save_summary_to_file(summary, file_path) # Save the summary to a file
return summary
else:
logging.error("Expected data not found in API response.")
return "Expected data not found in API response."
else:
logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}")
return f"kobold: API request failed: {response.text}"
except Exception as e:
logging.error("kobold: Error in processing: %s", str(e))
return f"kobold: Error occurred while processing summary with kobold: {str(e)}"
# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API
def summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt):
try:
logging.debug("ooba: Loading JSON data")
with open(file_path, 'r') as file:
segments = json.load(file)
logging.debug(f"ooba: Extracting text from segments file\n\n\n")
text = extract_text_from_segments(segments)
logging.debug(f"ooba: Finished extracting text from segments file")
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
# prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It
# is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are
# my favorite." prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable
ooba_prompt = f"{text}" + f"\n\n\n\n{custom_prompt}"
logging.debug("ooba: Prompt being sent is {ooba_prompt}")
data = {
"mode": "chat",
"character": "Example",
"messages": [{"role": "user", "content": ooba_prompt}]
}
logging.debug("ooba: Submitting request to API endpoint")
print("ooba: Submitting request to API endpoint")
response = requests.post(api_url, headers=headers, json=data, verify=False)
logging.debug("ooba: API Response Data: %s", response)
if response.status_code == 200:
response_data = response.json()
summary = response.json()['choices'][0]['message']['content']
logging.debug("ooba: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}")
return f"ooba: API request failed with status code {response.status_code}: {response.text}"
except Exception as e:
logging.error("ooba: Error in processing: %s", str(e))
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"
# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs.
def summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg):
vllm_client = OpenAI(
base_url=vllm_api_url,
api_key=vllm_api_key_function_arg
)
custom_prompt = vllm_custom_prompt_function_arg
completion = client.chat.completions.create(
model=llm_model,
messages=[
{"role": "system", "content": "You are a professional summarizer."},
{"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
]
)
vllm_summary = completion.choices[0].message.content
return vllm_summary
# FIXME - Install is more trouble than care to deal with right now.
def summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt):
model = tabby_model
headers = {
'Authorization': f'Bearer {tabby_api_key}',
'Content-Type': 'application/json'
}
data = {
'text': text,
'model': 'tabby' # Specify the model if needed
}
try:
response = requests.post('https://api.tabbyapi.com/summarize', headers=headers, json=data)
response.raise_for_status()
summary = response.json().get('summary', '')
return summary
except requests.exceptions.RequestException as e:
logger.error(f"Error summarizing with TabbyAPI: {e}")
return "Error summarizing with TabbyAPI."
def save_summary_to_file(summary, file_path):
logging.debug("Now saving summary to file...")
base_name = os.path.splitext(os.path.basename(file_path))[0]
summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt')
os.makedirs(os.path.dirname(summary_file_path), exist_ok=True)
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
with open(summary_file_path, 'w') as file:
file.write(summary)
logging.info(f"Summary saved to file: {summary_file_path}")
# From Video_DL_Ingestion_Lib.py
# def save_summary_to_file(summary: str, file_path: str):
# """Save summary to a JSON file."""
# summary_data = {'summary': summary, 'generated_at': datetime.now().isoformat()}
# with open(file_path, 'w') as file:
# json.dump(summary_data, file, indent=4)
#
#
#######################################################################################################################
#######################################################################################################################
# Function Definitions
#
# Download latest llamafile from Github
# Example usage
#repo = "Mozilla-Ocho/llamafile"
#asset_name_prefix = "llamafile-"
#output_filename = "llamafile"
#download_latest_llamafile(repo, asset_name_prefix, output_filename)
def download_latest_llamafile(repo, asset_name_prefix, output_filename):
# Check if the file already exists
print("Checking for and downloading Llamafile it it doesn't already exist...")
if os.path.exists(output_filename):
print("Llamafile already exists. Skipping download.")
logging.debug(f"{output_filename} already exists. Skipping download.")
llamafile_exists = True
else:
llamafile_exists = False
if llamafile_exists == True:
pass
else:
# Get the latest release information
latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest"
response = requests.get(latest_release_url)
if response.status_code != 200:
raise Exception(f"Failed to fetch latest release info: {response.status_code}")
latest_release_data = response.json()
tag_name = latest_release_data['tag_name']
# Get the release details using the tag name
release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}"
response = requests.get(release_details_url)
if response.status_code != 200:
raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}")
release_data = response.json()
assets = release_data.get('assets', [])
# Find the asset with the specified prefix
asset_url = None
for asset in assets:
if re.match(f"{asset_name_prefix}.*", asset['name']):
asset_url = asset['browser_download_url']
break
if not asset_url:
raise Exception(f"No asset found with prefix {asset_name_prefix}")
# Download the asset
response = requests.get(asset_url)
if response.status_code != 200:
raise Exception(f"Failed to download asset: {response.status_code}")
print("Llamafile downloaded successfully.")
logging.debug("Main: Llamafile downloaded successfully.")
# Save the file
with open(output_filename, 'wb') as file:
file.write(response.content)
logging.debug(f"Downloaded {output_filename} from {asset_url}")
print(f"Downloaded {output_filename} from {asset_url}")
# Check to see if the LLM already exists, and if not, download the LLM
print("Checking for and downloading LLM from Huggingface if needed...")
logging.debug("Main: Checking and downloading LLM from Huggingface if needed...")
mistral_7b_instruct_v0_2_q8_0_llamafile = "mistral-7b-instruct-v0.2.Q8_0.llamafile"
Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8 = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"
Phi_3_mini_128k_instruct_Q8_0_gguf = "Phi-3-mini-128k-instruct-Q8_0.gguf"
if os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile):
llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true"
elif os.path.exists(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8):
llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true"
print("Model is already downloaded. Skipping download.")
pass
else:
logging.debug("Main: Checking and downloading LLM from Huggingface if needed...")
print("Downloading LLM from Huggingface...")
time.sleep(1)
print("Gonna be a bit...")
time.sleep(1)
print("Like seriously, an 8GB file...")
time.sleep(2)
dl_check = input("Final chance to back out, hit 'N'/'n' to cancel, or 'Y'/'y' to continue: ")
if dl_check == "N" or dl_check == "n":
exit()
else:
print("Downloading LLM from Huggingface...")
# Establish hash values for LLM models
mistral_7b_instruct_v0_2_q8_gguf_sha256 = "f326f5f4f137f3ad30f8c9cc21d4d39e54476583e8306ee2931d5a022cb85b06"
samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4"
mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6"
global llm_choice
# FIXME - llm_choice
llm_choice = 2
llm_choice = input("Which LLM model would you like to download? 1. Mistral-7B-Instruct-v0.2-GGUF or 2. Samantha-Mistral-Instruct-7B-Bulleted-Notes) (plain or 'custom') or MS Flavor: Phi-3-mini-128k-instruct-Q8_0.gguf \n\n\tPress '1' or '2' or '3' to specify: ")
while llm_choice != "1" and llm_choice != "2" and llm_choice != "3":
print("Invalid choice. Please try again.")
if llm_choice == "1":
llm_download_model = "Mistral-7B-Instruct-v0.2-Q8.llamafile"
mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6"
llm_download_model_hash = mistral_7b_instruct_v0_2_q8_0_llamafile_sha256
llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true"
llamafile_llm_output_filename = "mistral-7b-instruct-v0.2.Q8_0.llamafile"
download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash)
elif llm_choice == "2":
llm_download_model = "Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8.gguf"
samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4"
llm_download_model_hash = samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256
llamafile_llm_output_filename = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"
llamafile_llm_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b-bulleted-notes-GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true"
download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash)
elif llm_choice == "3":
llm_download_model = "Phi-3-mini-128k-instruct-Q8_0.gguf"
Phi_3_mini_128k_instruct_Q8_0_gguf_sha256 = "6817b66d1c3c59ab06822e9732f0e594eea44e64cae2110906eac9d17f75d193"
llm_download_model_hash = Phi_3_mini_128k_instruct_Q8_0_gguf_sha256
llamafile_llm_output_filename = "Phi-3-mini-128k-instruct-Q8_0.gguf"
llamafile_llm_url = "https://huggingface.co/gaianet/Phi-3-mini-128k-instruct-GGUF/resolve/main/Phi-3-mini-128k-instruct-Q8_0.gguf?download=true"
download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash)
elif llm_choice == "4": # FIXME - and meta_Llama_3_8B_Instruct_Q8_0_llamafile_exists == False:
meta_Llama_3_8B_Instruct_Q8_0_llamafile_sha256 = "406868a97f02f57183716c7e4441d427f223fdbc7fa42964ef10c4d60dd8ed37"
llm_download_model_hash = meta_Llama_3_8B_Instruct_Q8_0_llamafile_sha256
llamafile_llm_output_filename = " Meta-Llama-3-8B-Instruct.Q8_0.llamafile"
llamafile_llm_url = "https://huggingface.co/Mozilla/Meta-Llama-3-8B-Instruct-llamafile/resolve/main/Meta-Llama-3-8B-Instruct.Q8_0.llamafile?download=true"
else:
print("Invalid choice. Please try again.")
return output_filename
def download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5):
temp_path = dest_path + '.tmp'
for attempt in range(max_retries):
try:
# Check if a partial download exists and get its size
resume_header = {}
if os.path.exists(temp_path):
resume_header = {'Range': f'bytes={os.path.getsize(temp_path)}-'}
response = requests.get(url, stream=True, headers=resume_header)
response.raise_for_status()
# Get the total file size from headers
total_size = int(response.headers.get('content-length', 0))
initial_pos = os.path.getsize(temp_path) if os.path.exists(temp_path) else 0
mode = 'ab' if 'Range' in response.headers else 'wb'
with open(temp_path, mode) as temp_file, tqdm(
total=total_size, unit='B', unit_scale=True, desc=dest_path, initial=initial_pos, ascii=True
) as pbar:
for chunk in response.iter_content(chunk_size=8192):
if chunk: # filter out keep-alive new chunks
temp_file.write(chunk)
pbar.update(len(chunk))
# Verify the checksum if provided
if expected_checksum:
if not verify_checksum(temp_path, expected_checksum):
os.remove(temp_path)
raise ValueError("Downloaded file's checksum does not match the expected checksum")
# Move the file to the final destination
os.rename(temp_path, dest_path)
print("Download complete and verified!")
return dest_path
except Exception as e:
print(f"Attempt {attempt + 1} failed: {e}")
if attempt < max_retries - 1:
print(f"Retrying in {delay} seconds...")
time.sleep(delay)
else:
print("Max retries reached. Download failed.")
raise
# FIXME / IMPLEMENT FULLY
# File download verification
#mistral_7b_llamafile_instruct_v02_q8_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true"
#global mistral_7b_instruct_v0_2_q8_0_llamafile_sha256
#mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6"
#mistral_7b_v02_instruct_model_q8_gguf_url = "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true"
#global mistral_7b_instruct_v0_2_q8_gguf_sha256
#mistral_7b_instruct_v0_2_q8_gguf_sha256 = "f326f5f4f137f3ad30f8c9cc21d4d39e54476583e8306ee2931d5a022cb85b06"
#samantha_instruct_model_q8_gguf_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b_bulleted-notes_GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true"
#global samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256
#samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4"
def verify_checksum(file_path, expected_checksum):
sha256_hash = hashlib.sha256()
with open(file_path, 'rb') as f:
for byte_block in iter(lambda: f.read(4096), b''):
sha256_hash.update(byte_block)
return sha256_hash.hexdigest() == expected_checksum
process = None
# Function to close out llamafile process on script exit.
def cleanup_process():
global process
if process is not None:
process.kill()
logging.debug("Main: Terminated the external process")
def signal_handler(sig, frame):
logging.info('Signal handler called with signal: %s', sig)
cleanup_process()
sys.exit(0)
# FIXME - Add callout to gradio UI
def local_llm_function():
global process
repo = "Mozilla-Ocho/llamafile"
asset_name_prefix = "llamafile-"
useros = os.name
if useros == "nt":
output_filename = "llamafile.exe"
else:
output_filename = "llamafile"
print(
"WARNING - Checking for existence of llamafile and HuggingFace model, downloading if needed...This could be a while")
print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...")
print("WARNING - Hope you're comfy. Or it's already downloaded.")
time.sleep(6)
logging.debug("Main: Checking and downloading Llamafile from Github if needed...")
llamafile_path = download_latest_llamafile(repo, asset_name_prefix, output_filename)
logging.debug("Main: Llamafile downloaded successfully.")
# FIXME - llm_choice
global llm_choice
llm_choice = 1
# Launch the llamafile in an external process with the specified argument
if llm_choice == 1:
arguments = ["--ctx-size", "8192 ", " -m", "mistral-7b-instruct-v0.2.Q8_0.llamafile"]
elif llm_choice == 2:
arguments = ["--ctx-size", "8192 ", " -m", "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"]
elif llm_choice == 3:
arguments = ["--ctx-size", "8192 ", " -m", "Phi-3-mini-128k-instruct-Q8_0.gguf"]
elif llm_choice == 4:
arguments = ["--ctx-size", "8192 ", " -m", "llama-3"] # FIXME
try:
logging.info("Main: Launching the LLM (llamafile) in an external terminal window...")
if useros == "nt":
launch_in_new_terminal_windows(llamafile_path, arguments)
elif useros == "posix":
launch_in_new_terminal_linux(llamafile_path, arguments)
else:
launch_in_new_terminal_mac(llamafile_path, arguments)
# FIXME - pid doesn't exist in this context
#logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}")
atexit.register(cleanup_process, process)
except Exception as e:
logging.error(f"Failed to launch the process: {e}")
print(f"Failed to launch the process: {e}")
def local_llm_gui_function(prompt, temperature, top_k, top_p, min_p, stream, stop, typical_p, repeat_penalty, repeat_last_n,
penalize_nl, presence_penalty, frequency_penalty, penalty_prompt, ignore_eos, system_prompt):
repo = "Mozilla-Ocho/llamafile"
asset_name_prefix = "llamafile-"
useros = os.name
if useros == "nt":
output_filename = "llamafile.exe"
else:
output_filename = "llamafile"
print(
"WARNING - Checking for existence of llamafile and HuggingFace model, downloading if needed...This could be a while")
print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...")
print("WARNING - Hope you're comfy. Or it's already downloaded.")
time.sleep(6)
logging.debug("Main: Checking and downloading Llamafile from Github if needed...")
llamafile_path = download_latest_llamafile(repo, asset_name_prefix, output_filename)
logging.debug("Main: Llamafile downloaded successfully.")
# FIXME - llm_choice
global llm_choice
llm_choice = 1
# Launch the llamafile in an external process with the specified argument
if llm_choice == 1:
arguments = ["--ctx-size", "8192 ", " -m", "mistral-7b-instruct-v0.2.Q8_0.llamafile"]
elif llm_choice == 2:
arguments = ["--ctx-size", "8192 ", " -m", "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"]
elif llm_choice == 3:
arguments = ["--ctx-size", "8192 ", " -m", "Phi-3-mini-128k-instruct-Q8_0.gguf"]
elif llm_choice == 4:
arguments = ["--ctx-size", "8192 ", " -m", "llama-3"] # FIXME
try:
logging.info("Main: Launching the LLM (llamafile) in an external terminal window...")
if useros == "nt":
launch_in_new_terminal_windows(llamafile_path, arguments)
elif useros == "posix":
launch_in_new_terminal_linux(llamafile_path, arguments)
else:
launch_in_new_terminal_mac(llamafile_path, arguments)
# FIXME - pid doesn't exist in this context
#logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}")
atexit.register(cleanup_process, process)
except Exception as e:
logging.error(f"Failed to launch the process: {e}")
print(f"Failed to launch the process: {e}")
# Launch the executable in a new terminal window # FIXME - really should figure out a cleaner way of doing this...
def launch_in_new_terminal_windows(executable, args):
command = f'start cmd /k "{executable} {" ".join(args)}"'
subprocess.Popen(command, shell=True)
# FIXME
def launch_in_new_terminal_linux(executable, args):
command = f'gnome-terminal -- {executable} {" ".join(args)}'
subprocess.Popen(command, shell=True)
# FIXME
def launch_in_new_terminal_mac(executable, args):
command = f'open -a Terminal.app {executable} {" ".join(args)}'
subprocess.Popen(command, shell=True)
#######################################################################################################################
# Function Definitions
#
def read_paths_from_file(file_path):
""" Reads a file containing URLs or local file paths and returns them as a list. """
paths = [] # Initialize paths as an empty list
with open(file_path, 'r') as file:
paths = [line.strip() for line in file]
return paths
def process_path(path):
""" Decides whether the path is a URL or a local file and processes accordingly. """
if path.startswith('http'):
logging.debug("file is a URL")
# For YouTube URLs, modify to download and extract info
return get_youtube(path)
elif os.path.exists(path):
logging.debug("File is a path")
# For local files, define a function to handle them
return process_local_file(path)
else:
logging.error(f"Path does not exist: {path}")
return None
# FIXME
def process_local_file(file_path):
logging.info(f"Processing local file: {file_path}")
title = normalize_title(os.path.splitext(os.path.basename(file_path))[0])
info_dict = {'title': title}
logging.debug(f"Creating {title} directory...")
download_path = create_download_directory(title)
logging.debug(f"Converting '{title}' to an audio file (wav).")
audio_file = convert_to_wav(file_path) # Assumes input files are videos needing audio extraction
logging.debug(f"'{title}' successfully converted to an audio file (wav).")
return download_path, info_dict, audio_file
def read_paths_from_file(file_path: str) -> List[str]:
"""Read paths from a text file."""
with open(file_path, 'r') as file:
paths = file.readlines()
return [path.strip() for path in paths]
#
#
#######################################################################################################################
#
#
#######################################################################################################################
#######################################################################################################################
# Chunking-related Techniques & Functions
#
#
# FIXME
#
#
#######################################################################################################################
#######################################################################################################################
# Tokenization-related Functions
#
#
# FIXME
#
#
#######################################################################################################################
#######################################################################################################################
# Website-related Techniques & Functions
#
#
#
#
#######################################################################################################################
#######################################################################################################################
# Summarizers
#
# Function List
# 1. extract_text_from_segments(segments: List[Dict]) -> str
# 2. summarize_with_openai(api_key, file_path, custom_prompt_arg)
# 3. summarize_with_claude(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
# 4. summarize_with_cohere(api_key, file_path, model, custom_prompt_arg)
# 5. summarize_with_groq(api_key, file_path, model, custom_prompt_arg)
#
#################################
# Local Summarization
#
# Function List
#
# 1. summarize_with_local_llm(file_path, custom_prompt_arg)
# 2. summarize_with_llama(api_url, file_path, token, custom_prompt)
# 3. summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt)
# 4. summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt)
# 5. summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg)
# 6. summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt)
# 7. save_summary_to_file(summary, file_path)
#
#######################################################################################################################
#######################################################################################################################
# Summarization with Detail
#
# FIXME - see 'Old_Chunking_Lib.py'
#
#
#######################################################################################################################
#######################################################################################################################
# Gradio UI
#
#######################################################################################################################
# Function Definitions
#
# Only to be used when configured with Gradio for HF Space
def format_transcription(transcription_result_arg):
if transcription_result_arg:
json_data = transcription_result_arg['transcription']
return json.dumps(json_data, indent=2)
else:
return ""
def format_file_path(file_path, fallback_path=None):
if file_path and os.path.exists(file_path):
logging.debug(f"File exists: {file_path}")
return file_path
elif fallback_path and os.path.exists(fallback_path):
logging.debug(f"File does not exist: {file_path}. Returning fallback path: {fallback_path}")
return fallback_path
else:
logging.debug(f"File does not exist: {file_path}. No fallback path available.")
return None
def search_media(query, fields, keyword, page):
try:
results = search_and_display(query, fields, keyword, page)
return results
except Exception as e:
logger.error(f"Error searching media: {e}")
return str(e)
# FIXME - code for the 're-prompt' functionality
#- Change to use 'check_api()' function - also, create 'check_api()' function
# def ask_question(transcription, question, api_name, api_key):
# if not question.strip():
# return "Please enter a question."
#
# prompt = f"""Transcription:\n{transcription}
#
# Given the above transcription, please answer the following:\n\n{question}"""
#
# # FIXME - Refactor main API checks so they're their own function - api_check()
# # Call api_check() function here
#
# if api_name.lower() == "openai":
# openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', fallback=None)
# headers = {
# 'Authorization': f'Bearer {openai_api_key}',
# 'Content-Type': 'application/json'
# }
# if openai_model:
# pass
# else:
# openai_model = 'gpt-4-turbo'
# data = {
# "model": openai_model,
# "messages": [
# {
# "role": "system",
# "content": "You are a helpful assistant that answers questions based on the given "
# "transcription and summary."
# },
# {
# "role": "user",
# "content": prompt
# }
# ],
# "max_tokens": 150000,
# "temperature": 0.1
# }
# response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
#
# if response.status_code == 200:
# answer = response.json()['choices'][0]['message']['content'].strip()
# return answer
# else:
# return "Failed to process the question."
# else:
# return "Question answering is currently only supported with the OpenAI API."
# For the above 'ask_question()' function, the following APIs are supported:
# summarizers: Dict[str, Callable[[str, str], str]] = {
# 'tabbyapi': summarize_with_tabbyapi,
# 'openai': summarize_with_openai,
# 'anthropic': summarize_with_claude,
# 'cohere': summarize_with_cohere,
# 'groq': summarize_with_groq,
# 'llama': summarize_with_llama,
# 'kobold': summarize_with_kobold,
# 'oobabooga': summarize_with_oobabooga,
# 'local-llm': summarize_with_local_llm,
# 'huggingface': summarize_with_huggingface,
# 'openrouter': summarize_with_openrouter
# # Add more APIs here as needed
# }
#########################################################################
# FIXME - Move to 'Web_UI_Lib.py'
# Gradio Search Function-related stuff
def display_details(media_id):
if media_id:
details = display_item_details(media_id)
details_html = ""
for detail in details:
details_html += f"<h4>Prompt:</h4><p>{detail[0]}</p>"
details_html += f"<h4>Summary:</h4><p>{detail[1]}</p>"
details_html += f"<h4>Transcription:</h4><pre>{detail[2]}</pre><hr>"
return details_html
return "No details available."
def fetch_items_by_title_or_url(search_query: str, search_type: str):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
if search_type == 'Title':
cursor.execute("SELECT id, title, url FROM Media WHERE title LIKE ?", (f'%{search_query}%',))
elif search_type == 'URL':
cursor.execute("SELECT id, title, url FROM Media WHERE url LIKE ?", (f'%{search_query}%',))
results = cursor.fetchall()
return results
except sqlite3.Error as e:
raise DatabaseError(f"Error fetching items by {search_type}: {e}")
def fetch_items_by_keyword(search_query: str):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT m.id, m.title, m.url
FROM Media m
JOIN MediaKeywords mk ON m.id = mk.media_id
JOIN Keywords k ON mk.keyword_id = k.id
WHERE k.keyword LIKE ?
""", (f'%{search_query}%',))
results = cursor.fetchall()
return results
except sqlite3.Error as e:
raise DatabaseError(f"Error fetching items by keyword: {e}")
def fetch_items_by_content(search_query: str):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
cursor.execute("SELECT id, title, url FROM Media WHERE content LIKE ?", (f'%{search_query}%',))
results = cursor.fetchall()
return results
except sqlite3.Error as e:
raise DatabaseError(f"Error fetching items by content: {e}")
def fetch_item_details(media_id: int):
try:
with db.get_connection() as conn:
cursor = conn.cursor()
cursor.execute("SELECT prompt, summary FROM MediaModifications WHERE media_id = ?", (media_id,))
prompt_summary_results = cursor.fetchall()
cursor.execute("SELECT content FROM Media WHERE id = ?", (media_id,))
content_result = cursor.fetchone()
content = content_result[0] if content_result else ""
return prompt_summary_results, content
except sqlite3.Error as e:
raise DatabaseError(f"Error fetching item details: {e}")
def browse_items(search_query, search_type):
if search_type == 'Keyword':
results = fetch_items_by_keyword(search_query)
elif search_type == 'Content':
results = fetch_items_by_content(search_query)
else:
results = fetch_items_by_title_or_url(search_query, search_type)
return results
def display_item_details(media_id):
prompt_summary_results, content = fetch_item_details(media_id)
content_section = f"<h4>Transcription:</h4><pre>{content}</pre><hr>"
prompt_summary_section = ""
for prompt, summary in prompt_summary_results:
prompt_summary_section += f"<h4>Prompt:</h4><p>{prompt}</p>"
prompt_summary_section += f"<h4>Summary:</h4><p>{summary}</p><hr>"
return prompt_summary_section, content_section
def update_dropdown(search_query, search_type):
results = browse_items(search_query, search_type)
item_options = [f"{item[1]} ({item[2]})" for item in results]
item_mapping = {f"{item[1]} ({item[2]})": item[0] for item in results} # Map item display to media ID
return gr.Dropdown.update(choices=item_options), item_mapping
def get_media_id(selected_item, item_mapping):
return item_mapping.get(selected_item)
def update_detailed_view(selected_item, item_mapping):
media_id = get_media_id(selected_item, item_mapping)
if media_id:
prompt_summary_html, content_html = display_item_details(media_id)
return gr.update(value=prompt_summary_html), gr.update(value=content_html)
return gr.update(value="No details available"), gr.update(value="No details available")
def update_prompt_dropdown():
prompt_names = list_prompts()
return gr.update(choices=prompt_names)
def display_prompt_details(selected_prompt):
if selected_prompt:
details = fetch_prompt_details(selected_prompt)
if details:
details_str = f"<h4>Details:</h4><p>{details[0]}</p>"
system_str = f"<h4>System:</h4><p>{details[1]}</p>"
user_str = f"<h4>User:</h4><p>{details[2]}</p>" if details[2] else ""
return details_str + system_str + user_str
return "No details available."
def insert_prompt_to_db(title, description, system_prompt, user_prompt):
try:
conn = sqlite3.connect('prompts.db')
cursor = conn.cursor()
cursor.execute(
"INSERT INTO Prompts (name, details, system, user) VALUES (?, ?, ?, ?)",
(title, description, system_prompt, user_prompt)
)
conn.commit()
conn.close()
return "Prompt added successfully!"
except sqlite3.Error as e:
return f"Error adding prompt: {e}"
def display_search_results(query):
if not query.strip():
return "Please enter a search query."
results = search_prompts(query)
# Debugging: Print the results to the console to see what is being returned
print(f"Processed search results for query '{query}': {results}")
if results:
result_md = "## Search Results:\n"
for result in results:
# Debugging: Print each result to see its format
print(f"Result item: {result}")
if len(result) == 2:
name, details = result
result_md += f"**Title:** {name}\n\n**Description:** {details}\n\n---\n"
else:
result_md += "Error: Unexpected result format.\n\n---\n"
return result_md
return "No results found."
#
# End of Gradio Search Function-related stuff
############################################################
# def gradio UI
def launch_ui(demo_mode=False):
whisper_models = ["small.en", "medium.en", "large"]
# Set theme value with https://www.gradio.app/guides/theming-guide - 'theme='
my_theme = gr.Theme.from_hub("gradio/seafoam")
with gr.Blocks(theme=my_theme) as iface:
# Tab 1: Audio Transcription + Summarization
with gr.Tab("Audio Transcription + Summarization"):
with gr.Row():
# Light/Dark mode toggle switch
theme_toggle = gr.Radio(choices=["Light", "Dark"], value="Light",
label="Light/Dark Mode Toggle (Toggle to change UI color scheme)")
# UI Mode toggle switch
ui_frontpage_mode_toggle = gr.Radio(choices=["Simple List", "Advanced List"], value="Simple List",
label="UI Mode Options Toggle(Toggle to show a few/all options)")
# Add the new toggle switch
chunk_summarization_toggle = gr.Radio(choices=["Non-Chunked", "Chunked-Summarization"],
value="Non-Chunked",
label="Summarization Mode")
# URL input is always visible
url_input = gr.Textbox(label="URL (Mandatory) --> Playlist URLs will be stripped and only the linked video"
" will be downloaded)", placeholder="Enter the video URL here")
# url_input = gr.Textbox(label="URL (Mandatory) --> Playlist URLs will be stripped and only the linked video"
# " will be downloaded)", placeholder="Enter the video URL here")
# Inputs to be shown or hidden
num_speakers_input = gr.Number(value=2, label="Number of Speakers(Optional - Currently has no effect)",
visible=False)
whisper_model_input = gr.Dropdown(choices=whisper_models, value="small.en",
label="Whisper Model(This is the ML model used for transcription.)",
visible=False)
custom_prompt_input = gr.Textbox(
label="Custom Prompt (Customize your summarization, or ask a question about the video and have it "
"answered)\n Does not work against the summary currently.",
placeholder="Above is the transcript of a video. Please read "
"through the transcript carefully. Identify the main topics that are discussed over the "
"course of the transcript. Then, summarize the key points about each main topic in a "
"concise bullet point. The bullet points should cover the key information conveyed about "
"each topic in the video, but should be much shorter than the full transcript. Please "
"output your bullet point summary inside <bulletpoints> tags.",
lines=3, visible=True)
offset_input = gr.Number(value=0, label="Offset (Seconds into the video to start transcribing at)",
visible=False)
api_name_input = gr.Dropdown(
choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "OpenRouter", "Llama.cpp",
"Kobold", "Ooba", "HuggingFace"],
value=None,
label="API Name (Mandatory) --> Unless you just want a Transcription", visible=True)
api_key_input = gr.Textbox(
label="API Key (Mandatory) --> Unless you're running a local model/server OR have no API selected",
placeholder="Enter your API key here; Ignore if using Local API or Built-in API('Local-LLM')",
visible=True)
vad_filter_input = gr.Checkbox(label="VAD Filter (WIP)", value=False,
visible=False)
rolling_summarization_input = gr.Checkbox(label="Enable Rolling Summarization", value=False,
visible=False)
download_video_input = gr.components.Checkbox(label="Download Video(Select to allow for file download of "
"selected video)", value=False, visible=False)
download_audio_input = gr.components.Checkbox(label="Download Audio(Select to allow for file download of "
"selected Video's Audio)", value=False, visible=False)
detail_level_input = gr.Slider(minimum=0.01, maximum=1.0, value=0.01, step=0.01, interactive=True,
label="Summary Detail Level (Slide me) (Only OpenAI currently supported)",
visible=False)
keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated Example: "
"tag_one,tag_two,tag_three)",
value="default,no_keyword_set",
visible=True)
question_box_input = gr.Textbox(label="Question",
placeholder="Enter a question to ask about the transcription",
visible=False)
# Add the additional input components
chunk_text_by_words_checkbox = gr.Checkbox(label="Chunk Text by Words", value=False, visible=False)
max_words_input = gr.Number(label="Max Words", value=0, precision=0, visible=False)
chunk_text_by_sentences_checkbox = gr.Checkbox(label="Chunk Text by Sentences", value=False,
visible=False)
max_sentences_input = gr.Number(label="Max Sentences", value=0, precision=0, visible=False)
chunk_text_by_paragraphs_checkbox = gr.Checkbox(label="Chunk Text by Paragraphs", value=False,
visible=False)
max_paragraphs_input = gr.Number(label="Max Paragraphs", value=0, precision=0, visible=False)
chunk_text_by_tokens_checkbox = gr.Checkbox(label="Chunk Text by Tokens", value=False, visible=False)
max_tokens_input = gr.Number(label="Max Tokens", value=0, precision=0, visible=False)
inputs = [
num_speakers_input, whisper_model_input, custom_prompt_input, offset_input, api_name_input,
api_key_input, vad_filter_input, download_video_input, download_audio_input,
rolling_summarization_input, detail_level_input, question_box_input, keywords_input,
chunk_text_by_words_checkbox, max_words_input, chunk_text_by_sentences_checkbox,
max_sentences_input, chunk_text_by_paragraphs_checkbox, max_paragraphs_input,
chunk_text_by_tokens_checkbox, max_tokens_input
]
all_inputs = [url_input] + inputs
outputs = [
gr.Textbox(label="Transcription (Resulting Transcription from your input URL)"),
gr.Textbox(label="Summary or Status Message (Current status of Summary or Summary itself)"),
gr.File(label="Download Transcription as JSON (Download the Transcription as a file)"),
gr.File(label="Download Summary as Text (Download the Summary as a file)"),
gr.File(label="Download Video (Download the Video as a file)", visible=True),
gr.File(label="Download Audio (Download the Audio as a file)", visible=False),
]
# Function to toggle visibility of advanced inputs
def toggle_frontpage_ui(mode):
visible_simple = mode == "Simple List"
visible_advanced = mode == "Advanced List"
return [
gr.update(visible=True), # URL input should always be visible
gr.update(visible=visible_advanced), # num_speakers_input
gr.update(visible=visible_advanced), # whisper_model_input
gr.update(visible=True), # custom_prompt_input
gr.update(visible=visible_advanced), # offset_input
gr.update(visible=True), # api_name_input
gr.update(visible=True), # api_key_input
gr.update(visible=visible_advanced), # vad_filter_input
gr.update(visible=visible_advanced), # download_video_input
gr.update(visible=visible_advanced), # download_audio_input
gr.update(visible=visible_advanced), # rolling_summarization_input
gr.update(visible_advanced), # detail_level_input
gr.update(visible_advanced), # question_box_input
gr.update(visible=True), # keywords_input
gr.update(visible_advanced), # chunk_text_by_words_checkbox
gr.update(visible_advanced), # max_words_input
gr.update(visible_advanced), # chunk_text_by_sentences_checkbox
gr.update(visible_advanced), # max_sentences_input
gr.update(visible_advanced), # chunk_text_by_paragraphs_checkbox
gr.update(visible_advanced), # max_paragraphs_input
gr.update(visible_advanced), # chunk_text_by_tokens_checkbox
gr.update(visible_advanced), # max_tokens_input
]
def toggle_chunk_summarization(mode):
visible = (mode == "Chunked-Summarization")
return [
gr.update(visible=visible), # chunk_text_by_words_checkbox
gr.update(visible=visible), # max_words_input
gr.update(visible=visible), # chunk_text_by_sentences_checkbox
gr.update(visible=visible), # max_sentences_input
gr.update(visible=visible), # chunk_text_by_paragraphs_checkbox
gr.update(visible=visible), # max_paragraphs_input
gr.update(visible=visible), # chunk_text_by_tokens_checkbox
gr.update(visible=visible) # max_tokens_input
]
chunk_summarization_toggle.change(fn=toggle_chunk_summarization, inputs=chunk_summarization_toggle,
outputs=[
chunk_text_by_words_checkbox, max_words_input,
chunk_text_by_sentences_checkbox, max_sentences_input,
chunk_text_by_paragraphs_checkbox, max_paragraphs_input,
chunk_text_by_tokens_checkbox, max_tokens_input
])
def start_llamafile(prompt, temperature, top_k, top_p, min_p, stream, stop, typical_p, repeat_penalty,
repeat_last_n,
penalize_nl, presence_penalty, frequency_penalty, penalty_prompt, ignore_eos,
system_prompt):
# Code to start llamafile with the provided configuration
local_llm_gui_function(prompt, temperature, top_k, top_p, min_p, stream, stop, typical_p,
repeat_penalty,
repeat_last_n,
penalize_nl, presence_penalty, frequency_penalty, penalty_prompt, ignore_eos,
system_prompt)
# FIXME
return "Llamafile started"
def stop_llamafile():
# Code to stop llamafile
# ...
return "Llamafile stopped"
def toggle_light(mode):
if mode == "Dark":
return """
<style>
body {
background-color: #1c1c1c;
color: #ffffff;
}
.gradio-container {
background-color: #1c1c1c;
color: #ffffff;
}
.gradio-button {
background-color: #4c4c4c;
color: #ffffff;
}
.gradio-input {
background-color: #4c4c4c;
color: #ffffff;
}
.gradio-dropdown {
background-color: #4c4c4c;
color: #ffffff;
}
.gradio-slider {
background-color: #4c4c4c;
}
.gradio-checkbox {
background-color: #4c4c4c;
}
.gradio-radio {
background-color: #4c4c4c;
}
.gradio-textbox {
background-color: #4c4c4c;
color: #ffffff;
}
.gradio-label {
color: #ffffff;
}
</style>
"""
else:
return """
<style>
body {
background-color: #ffffff;
color: #000000;
}
.gradio-container {
background-color: #ffffff;
color: #000000;
}
.gradio-button {
background-color: #f0f0f0;
color: #000000;
}
.gradio-input {
background-color: #f0f0f0;
color: #000000;
}
.gradio-dropdown {
background-color: #f0f0f0;
color: #000000;
}
.gradio-slider {
background-color: #f0f0f0;
}
.gradio-checkbox {
background-color: #f0f0f0;
}
.gradio-radio {
background-color: #f0f0f0;
}
.gradio-textbox {
background-color: #f0f0f0;
color: #000000;
}
.gradio-label {
color: #000000;
}
</style>
"""
# Set the event listener for the Light/Dark mode toggle switch
theme_toggle.change(fn=toggle_light, inputs=theme_toggle, outputs=gr.HTML())
ui_frontpage_mode_toggle.change(fn=toggle_frontpage_ui, inputs=ui_frontpage_mode_toggle, outputs=inputs)
# Combine URL input and inputs lists
all_inputs = [url_input] + inputs
# lets try embedding the theme here - FIXME?
gr.Interface(
fn=process_url,
inputs=all_inputs,
outputs=outputs,
title="Video Transcription and Summarization",
description="Submit a video URL for transcription and summarization. Ensure you input all necessary "
"information including API keys.",
theme='freddyaboulton/dracula_revamped',
allow_flagging="never"
)
# Tab 2: Scrape & Summarize Articles/Websites
with gr.Tab("Scrape & Summarize Articles/Websites"):
url_input = gr.Textbox(label="Article URL", placeholder="Enter the article URL here")
custom_article_title_input = gr.Textbox(label="Custom Article Title (Optional)",
placeholder="Enter a custom title for the article")
custom_prompt_input = gr.Textbox(
label="Custom Prompt (Optional)",
placeholder="Provide a custom prompt for summarization",
lines=3
)
api_name_input = gr.Dropdown(
choices=[None, "huggingface", "openrouter", "openai", "anthropic", "cohere", "groq", "llama", "kobold",
"ooba"],
value=None,
label="API Name (Mandatory for Summarization)"
)
api_key_input = gr.Textbox(label="API Key (Mandatory if API Name is specified)",
placeholder="Enter your API key here; Ignore if using Local API or Built-in API")
keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated)",
value="default,no_keyword_set", visible=True)
scrape_button = gr.Button("Scrape and Summarize")
result_output = gr.Textbox(label="Result")
scrape_button.click(scrape_and_summarize, inputs=[url_input, custom_prompt_input, api_name_input,
api_key_input, keywords_input,
custom_article_title_input], outputs=result_output)
gr.Markdown("### Or Paste Unstructured Text Below (Will use settings from above)")
text_input = gr.Textbox(label="Unstructured Text", placeholder="Paste unstructured text here", lines=10)
text_ingest_button = gr.Button("Ingest Unstructured Text")
text_ingest_result = gr.Textbox(label="Result")
text_ingest_button.click(ingest_unstructured_text,
inputs=[text_input, custom_prompt_input, api_name_input, api_key_input,
keywords_input, custom_article_title_input], outputs=text_ingest_result)
with gr.Tab("Ingest & Summarize Documents"):
gr.Markdown("Plan to put ingestion form for documents here")
gr.Markdown("Will ingest documents and store into SQLite DB")
gr.Markdown("RAG here we come....:/")
# Function to update the visibility of the UI elements for Llamafile Settings
def toggle_advanced_llamafile_mode(is_advanced):
if is_advanced:
return [gr.update(visible=True)] * 14
else:
return [gr.update(visible=False)] * 11 + [gr.update(visible=True)] * 3
with gr.Blocks() as search_interface:
with gr.Tab("Search & Detailed Entry View"):
search_query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here...")
search_type_input = gr.Radio(choices=["Title", "URL", "Keyword", "Content"], value="Title",
label="Search By")
search_button = gr.Button("Search")
items_output = gr.Dropdown(label="Select Item", choices=[])
item_mapping = gr.State({})
search_button.click(fn=update_dropdown, inputs=[search_query_input, search_type_input],
outputs=[items_output, item_mapping])
prompt_summary_output = gr.HTML(label="Prompt & Summary", visible=True)
content_output = gr.HTML(label="Content", visible=True)
items_output.change(fn=update_detailed_view, inputs=[items_output, item_mapping],
outputs=[prompt_summary_output, content_output])
with gr.Tab("View Prompts"):
with gr.Column():
prompt_dropdown = gr.Dropdown(label="Select Prompt", choices=[])
prompt_details_output = gr.HTML()
prompt_dropdown.change(
fn=display_prompt_details,
inputs=prompt_dropdown,
outputs=prompt_details_output
)
prompt_list_button = gr.Button("List Prompts")
prompt_list_button.click(
fn=update_prompt_dropdown,
outputs=prompt_dropdown
)
# FIXME
with gr.Tab("Search Prompts"):
with gr.Column():
search_query_input = gr.Textbox(label="Search Query (It's broken)", placeholder="Enter your search query...")
search_results_output = gr.Markdown()
search_button = gr.Button("Search Prompts")
search_button.click(
fn=display_search_results,
inputs=[search_query_input],
outputs=[search_results_output]
)
search_query_input.change(
fn=display_search_results,
inputs=[search_query_input],
outputs=[search_results_output]
)
with gr.Tab("Add Prompts"):
gr.Markdown("### Add Prompt")
title_input = gr.Textbox(label="Title", placeholder="Enter the prompt title")
description_input = gr.Textbox(label="Description", placeholder="Enter the prompt description", lines=3)
system_prompt_input = gr.Textbox(label="System Prompt", placeholder="Enter the system prompt", lines=3)
user_prompt_input = gr.Textbox(label="User Prompt", placeholder="Enter the user prompt", lines=3)
add_prompt_button = gr.Button("Add Prompt")
add_prompt_output = gr.HTML()
add_prompt_button.click(
fn=add_prompt,
inputs=[title_input, description_input, system_prompt_input, user_prompt_input],
outputs=add_prompt_output
)
with gr.Blocks() as llamafile_interface:
with gr.Tab("Llamafile Settings"):
gr.Markdown("Settings for Llamafile")
# Toggle switch for Advanced/Simple mode
advanced_mode_toggle = gr.Checkbox(
label="Advanced Mode - Click->Click again to only show 'simple' settings. Is a known bug...",
value=False)
# Start/Stop buttons
start_button = gr.Button("Start Llamafile")
stop_button = gr.Button("Stop Llamafile")
# Configuration inputs
prompt_input = gr.Textbox(label="Prompt", value="")
temperature_input = gr.Number(label="Temperature", value=0.8)
top_k_input = gr.Number(label="Top K", value=40)
top_p_input = gr.Number(label="Top P", value=0.95)
min_p_input = gr.Number(label="Min P", value=0.05)
stream_input = gr.Checkbox(label="Stream", value=False)
stop_input = gr.Textbox(label="Stop", value="[]")
typical_p_input = gr.Number(label="Typical P", value=1.0)
repeat_penalty_input = gr.Number(label="Repeat Penalty", value=1.1)
repeat_last_n_input = gr.Number(label="Repeat Last N", value=64)
penalize_nl_input = gr.Checkbox(label="Penalize New Lines", value=False)
presence_penalty_input = gr.Number(label="Presence Penalty", value=0.0)
frequency_penalty_input = gr.Number(label="Frequency Penalty", value=0.0)
penalty_prompt_input = gr.Textbox(label="Penalty Prompt", value="")
ignore_eos_input = gr.Checkbox(label="Ignore EOS", value=False)
system_prompt_input = gr.Textbox(label="System Prompt", value="")
# Output display
output_display = gr.Textbox(label="Llamafile Output")
# Function calls local_llm_gui_function() with the provided arguments
# local_llm_gui_function() is found in 'Local_LLM_Inference_Engine_Lib.py' file
start_button.click(start_llamafile,
inputs=[prompt_input, temperature_input, top_k_input, top_p_input, min_p_input,
stream_input, stop_input, typical_p_input, repeat_penalty_input,
repeat_last_n_input, penalize_nl_input, presence_penalty_input,
frequency_penalty_input, penalty_prompt_input, ignore_eos_input,
system_prompt_input], outputs=output_display)
# This function is not implemented yet...
# FIXME - Implement this function
stop_button.click(stop_llamafile, outputs=output_display)
# Toggle event for Advanced/Simple mode
advanced_mode_toggle.change(toggle_advanced_llamafile_mode,
inputs=[advanced_mode_toggle],
outputs=[top_k_input, top_p_input, min_p_input, stream_input, stop_input,
typical_p_input, repeat_penalty_input, repeat_last_n_input,
penalize_nl_input, presence_penalty_input, frequency_penalty_input,
penalty_prompt_input, ignore_eos_input])
with gr.Tab("Llamafile Chat Interface"):
gr.Markdown("Page to interact with Llamafile Server (iframe to Llamafile server port)")
# Define the HTML content with the iframe
html_content = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Llama.cpp Server Chat Interface - Loaded from http://127.0.0.1:8080</title>
<style>
body, html {
height: 100%;
margin: 0;
padding: 0;
}
iframe {
border: none;
width: 85%;
height: 85vh; /* Full viewport height */
}
</style>
</head>
<body>
<iframe src="http://127.0.0.1:8080" title="Llama.cpp Server Chat Interface - Loaded from http://127.0.0.1:8080"></iframe>
</body>
</html>
"""
gr.HTML(html_content)
export_keywords_interface = gr.Interface(
fn=export_keywords_to_csv,
inputs=[],
outputs=[gr.File(label="Download Exported Keywords"), gr.Textbox(label="Status")],
title="Export Keywords",
description="Export all keywords in the database to a CSV file."
)
# Gradio interface for importing data
def import_data(file):
# Placeholder for actual import functionality
return "Data imported successfully"
import_interface = gr.Interface(
fn=import_data,
inputs=gr.File(label="Upload file for import"),
outputs="text",
title="Import Data",
description="Import data into the database from a CSV file."
)
import_export_tab = gr.TabbedInterface(
[gr.TabbedInterface(
[gr.Interface(
fn=export_to_csv,
inputs=[
gr.Textbox(label="Search Query", placeholder="Enter your search query here..."),
gr.CheckboxGroup(label="Search Fields", choices=["Title", "Content"], value=["Title"]),
gr.Textbox(label="Keyword (Match ALL, can use multiple keywords, separated by ',' (comma) )",
placeholder="Enter keywords here..."),
gr.Number(label="Page", value=1, precision=0),
gr.Number(label="Results per File", value=1000, precision=0)
],
outputs="text",
title="Export Search Results to CSV",
description="Export the search results to a CSV file."
),
export_keywords_interface],
["Export Search Results", "Export Keywords"]
),
import_interface],
["Export", "Import"]
)
keyword_add_interface = gr.Interface(
fn=add_keyword,
inputs=gr.Textbox(label="Add Keywords (comma-separated)", placeholder="Enter keywords here..."),
outputs="text",
title="Add Keywords",
description="Add one, or multiple keywords to the database.",
allow_flagging="never"
)
keyword_delete_interface = gr.Interface(
fn=delete_keyword,
inputs=gr.Textbox(label="Delete Keyword", placeholder="Enter keyword to delete here..."),
outputs="text",
title="Delete Keyword",
description="Delete a keyword from the database.",
allow_flagging="never"
)
browse_keywords_interface = gr.Interface(
fn=keywords_browser_interface,
inputs=[],
outputs="markdown",
title="Browse Keywords",
description="View all keywords currently stored in the database."
)
keyword_tab = gr.TabbedInterface(
[browse_keywords_interface, keyword_add_interface, keyword_delete_interface],
["Browse Keywords", "Add Keywords", "Delete Keywords"]
)
def ensure_dir_exists(path):
if not os.path.exists(path):
os.makedirs(path)
def gradio_download_youtube_video(url):
"""Download video using yt-dlp with specified options."""
# Determine ffmpeg path based on the operating system.
ffmpeg_path = './Bin/ffmpeg.exe' if os.name == 'nt' else 'ffmpeg'
# Extract information about the video
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
info_dict = ydl.extract_info(url, download=False)
sanitized_title = sanitize_filename(info_dict['title'])
original_ext = info_dict['ext']
# Setup the final directory and filename
download_dir = Path(f"results/{sanitized_title}")
download_dir.mkdir(parents=True, exist_ok=True)
output_file_path = download_dir / f"{sanitized_title}.{original_ext}"
# Initialize yt-dlp with generic options and the output template
ydl_opts = {
'format': 'bestvideo+bestaudio/best',
'ffmpeg_location': ffmpeg_path,
'outtmpl': str(output_file_path),
'noplaylist': True, 'quiet': True
}
# Execute yt-dlp to download the video
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
# Final check to ensure file exists
if not output_file_path.exists():
raise FileNotFoundError(f"Expected file was not found: {output_file_path}")
return str(output_file_path)
download_videos_interface = gr.Interface(
fn=gradio_download_youtube_video,
inputs=gr.Textbox(label="YouTube URL", placeholder="Enter YouTube video URL here"),
outputs=gr.File(label="Download Video"),
title="YouTube Video Downloader (Simple youtube video downloader tool, if you want a real one, check this project: https://github.com/StefanLobbenmeier/youtube-dl-gui or https://github.com/yt-dlg/yt-dlg )",
description="Enter a YouTube URL to download the video.",
allow_flagging="never"
)
# Combine interfaces into a tabbed interface
tabbed_interface = gr.TabbedInterface([iface, search_interface, llamafile_interface, keyword_tab, import_export_tab, download_videos_interface],
["Transcription / Summarization / Ingestion", "Search / Detailed View",
"Llamafile Interface", "Keywords", "Export/Import", "Download Video/Audio Files"])
# Launch the interface
server_port_variable = 7860
global server_mode, share_public
if server_mode is True and share_public is False:
tabbed_interface.launch(share=True, server_port=server_port_variable, server_name="http://0.0.0.0")
elif share_public == True:
tabbed_interface.launch(share=True, )
else:
tabbed_interface.launch(share=False, )
def clean_youtube_url(url):
parsed_url = urlparse(url)
query_params = parse_qs(parsed_url.query)
if 'list' in query_params:
query_params.pop('list')
cleaned_query = urlencode(query_params, doseq=True)
cleaned_url = urlunparse(parsed_url._replace(query=cleaned_query))
return cleaned_url
def process_url(
url,
num_speakers,
whisper_model,
custom_prompt,
offset,
api_name,
api_key,
vad_filter,
download_video,
download_audio,
rolling_summarization,
detail_level,
question_box,
keywords,
chunk_text_by_words,
max_words,
chunk_text_by_sentences,
max_sentences,
chunk_text_by_paragraphs,
max_paragraphs,
chunk_text_by_tokens,
max_tokens
):
# Handle the chunk summarization options
set_chunk_txt_by_words = chunk_text_by_words
set_max_txt_chunk_words = max_words
set_chunk_txt_by_sentences = chunk_text_by_sentences
set_max_txt_chunk_sentences = max_sentences
set_chunk_txt_by_paragraphs = chunk_text_by_paragraphs
set_max_txt_chunk_paragraphs = max_paragraphs
set_chunk_txt_by_tokens = chunk_text_by_tokens
set_max_txt_chunk_tokens = max_tokens
# Validate input
if not url:
return "No URL provided.", "No URL provided.", None, None, None, None, None, None
if not is_valid_url(url):
return "Invalid URL format.", "Invalid URL format.", None, None, None, None, None, None
# Clean the URL to remove playlist parameters if any
url = clean_youtube_url(url)
print("API Name received:", api_name) # Debugging line
logging.info(f"Processing URL: {url}")
video_file_path = None
global info_dict
try:
# Instantiate the database, db as a instance of the Database class
db = Database()
media_url = url
info_dict = get_youtube(url) # Extract video information using yt_dlp
media_title = info_dict['title'] if 'title' in info_dict else 'Untitled'
download_video_flag = True
results = main(url, api_name=api_name, api_key=api_key,
num_speakers=num_speakers,
whisper_model=whisper_model,
offset=offset,
vad_filter=vad_filter,
download_video_flag=download_video,
custom_prompt=custom_prompt,
overwrite=args.overwrite,
rolling_summarization=rolling_summarization,
detail=detail_level,
keywords=keywords,
)
if not results:
return "No URL provided.", "No URL provided.", None, None, None, None, None, None
transcription_result = results[0]
transcription_text = json.dumps(transcription_result['transcription'], indent=2)
summary_text = transcription_result.get('summary', 'Summary not available')
# Prepare file paths for transcription and summary
# Sanitize filenames
audio_file_sanitized = sanitize_filename(transcription_result['audio_file'])
json_pretty_file_path = os.path.join('Results', audio_file_sanitized.replace('.wav', '.segments_pretty.json'))
json_file_path = os.path.join('Results', audio_file_sanitized.replace('.wav', '.segments.json'))
summary_file_path = os.path.join('Results', audio_file_sanitized.replace('.wav', '_summary.txt'))
logging.debug(f"Transcription result: {transcription_result}")
logging.debug(f"Audio file path: {transcription_result['audio_file']}")
# Write the transcription to the JSON File
try:
with open(json_file_path, 'w') as json_file:
json.dump(transcription_result['transcription'], json_file, indent=2)
except IOError as e:
logging.error(f"Error writing transcription to JSON file: {e}")
# Write the summary to the summary file
with open(summary_file_path, 'w') as summary_file:
summary_file.write(summary_text)
try:
if download_video:
video_file_path = transcription_result.get('video_path', None)
if video_file_path and os.path.exists(video_file_path):
logging.debug(f"Confirmed existence of video file at {video_file_path}")
else:
logging.error(f"Video file not found at expected path: {video_file_path}")
video_file_path = None
else:
video_file_path = None
if isinstance(transcription_result['transcription'], list):
text = ' '.join([segment['Text'] for segment in transcription_result['transcription']])
else:
text = ''
except Exception as e:
logging.error(f"Error processing video file: {e}")
# Check if files exist before returning paths
if not os.path.exists(json_file_path):
raise FileNotFoundError(f"File not found: {json_file_path}")
if not os.path.exists(summary_file_path):
raise FileNotFoundError(f"File not found: {summary_file_path}")
formatted_transcription = format_transcription(transcription_result)
try:
# Ensure these variables are correctly populated
custom_prompt = args.custom_prompt if args.custom_prompt else ("\n\nabove is the transcript of a video "
"Please read through the transcript carefully. Identify the main topics that are discussed over the "
"course of the transcript. Then, summarize the key points about each main topic in a concise bullet "
"point. The bullet points should cover the key information conveyed about each topic in the video, "
"but should be much shorter than the full transcript. Please output your bullet point summary inside "
"<bulletpoints> tags.")
db = Database()
create_tables()
media_url = url
# FIXME - IDK?
video_info = get_video_info(media_url)
media_title = get_page_title(media_url)
media_type = "video"
media_content = transcription_text
keyword_list = keywords.split(',') if keywords else ["default"]
media_keywords = ', '.join(keyword_list)
media_author = "auto_generated"
media_ingestion_date = datetime.now().strftime('%Y-%m-%d')
transcription_model = whisper_model # Add the transcription model used
# Log the values before calling the function
logging.info(f"Media URL: {media_url}")
logging.info(f"Media Title: {media_title}")
logging.debug(f"Media Type: {media_type}")
logging.debug(f"Media Content: {media_content}")
logging.debug(f"Media Keywords: {media_keywords}")
logging.debug(f"Media Author: {media_author}")
logging.debug(f"Ingestion Date: {media_ingestion_date}")
logging.debug(f"Custom Prompt: {custom_prompt}")
logging.debug(f"Summary Text: {summary_text}")
logging.debug(f"Transcription Model: {transcription_model}")
# Check if any required field is empty
if not media_url or not media_title or not media_type or not media_content or not media_keywords or not custom_prompt or not summary_text:
raise InputError("Please provide all required fields.")
add_media_with_keywords(
url=media_url,
title=media_title,
media_type=media_type,
content=media_content,
keywords=media_keywords,
prompt=custom_prompt,
summary=summary_text,
transcription_model=transcription_model, # Pass the transcription model
author=media_author,
ingestion_date=media_ingestion_date
)
except Exception as e:
logging.error(f"Failed to add media to the database: {e}")
if summary_file_path and os.path.exists(summary_file_path):
return transcription_text, summary_text, json_file_path, summary_file_path, video_file_path, None
else:
return transcription_text, summary_text, json_file_path, None, video_file_path, None
except KeyError as e:
logging.error(f"Error processing {url}: {str(e)}")
return str(e), 'Error processing the request.', None, None, None, None
except Exception as e:
logging.error(f"Error processing URL: {e}")
return str(e), 'Error processing the request.', None, None, None, None
# FIXME - Prompt sample box
# Sample data
prompts_category_1 = [
"What are the key points discussed in the video?",
"Summarize the main arguments made by the speaker.",
"Describe the conclusions of the study presented."
]
prompts_category_2 = [
"How does the proposed solution address the problem?",
"What are the implications of the findings?",
"Can you explain the theory behind the observed phenomenon?"
]
all_prompts = prompts_category_1 + prompts_category_2
# Search function
def search_prompts(query):
filtered_prompts = [prompt for prompt in all_prompts if query.lower() in prompt.lower()]
return "\n".join(filtered_prompts)
# Handle prompt selection
def handle_prompt_selection(prompt):
return f"You selected: {prompt}"
#
#
#######################################################################################################################
#######################################################################################################################
# Local LLM Setup / Running
#
# Function List
# 1. download_latest_llamafile(repo, asset_name_prefix, output_filename)
# 2. download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5)
# 3. verify_checksum(file_path, expected_checksum)
# 4. cleanup_process()
# 5. signal_handler(sig, frame)
# 6. local_llm_function()
# 7. launch_in_new_terminal_windows(executable, args)
# 8. launch_in_new_terminal_linux(executable, args)
# 9. launch_in_new_terminal_mac(executable, args)
#
#
#######################################################################################################################
#######################################################################################################################
# Main()
#
def main(input_path, api_name=None, api_key=None,
num_speakers=2,
whisper_model="small.en",
offset=0,
vad_filter=False,
download_video_flag=True,
custom_prompt=None,
overwrite=False,
rolling_summarization=False,
detail=0.01,
keywords=None,
llm_model=None,
time_based=False,
set_chunk_txt_by_words=False,
set_max_txt_chunk_words=0,
set_chunk_txt_by_sentences=False,
set_max_txt_chunk_sentences=0,
set_chunk_txt_by_paragraphs=False,
set_max_txt_chunk_paragraphs=0,
set_chunk_txt_by_tokens=False,
set_max_txt_chunk_tokens=0,
):
global detail_level_number, summary, audio_file, transcription_result, info_dict
detail_level = detail
print(f"Keywords: {keywords}")
if input_path is None and args.user_interface:
return []
start_time = time.monotonic()
paths = [] # Initialize paths as an empty list
if os.path.isfile(input_path) and input_path.endswith('.txt'):
logging.debug("MAIN: User passed in a text file, processing text file...")
paths = read_paths_from_file(input_path)
elif os.path.exists(input_path):
logging.debug("MAIN: Local file path detected")
paths = [input_path]
elif (info_dict := get_youtube(input_path)) and 'entries' in info_dict:
logging.debug("MAIN: YouTube playlist detected")
print(
"\n\nSorry, but playlists aren't currently supported. You can run the following command to generate a "
"text file that you can then pass into this script though! (It may not work... playlist support seems "
"spotty)" + """\n\n\tpython Get_Playlist_URLs.py <Youtube Playlist URL>\n\n\tThen,\n\n\tpython
diarizer.py <playlist text file name>\n\n""")
return
else:
paths = [input_path]
results = []
for path in paths:
try:
if path.startswith('http'):
logging.debug("MAIN: URL Detected")
info_dict = get_youtube(path)
json_file_path = None
if info_dict:
logging.debug(f"MAIN: info_dict content: {info_dict}")
logging.debug("MAIN: Creating path for video file...")
download_path = create_download_directory(info_dict['title'])
logging.debug("MAIN: Path created successfully\n MAIN: Now Downloading video from yt_dlp...")
download_video_flag = True
try:
video_path = download_video(path, download_path, info_dict, download_video_flag)
if video_path is None:
logging.error("MAIN: video_path is None after download_video")
continue
except RuntimeError as e:
logging.error(f"Error downloading video: {str(e)}")
# FIXME - figure something out for handling this situation....
continue
logging.debug("MAIN: Video downloaded successfully")
logging.debug("MAIN: Converting video file to WAV...")
audio_file = convert_to_wav(video_path, offset)
logging.debug("MAIN: Audio file converted successfully")
else:
if os.path.exists(path):
logging.debug("MAIN: Local file path detected")
download_path, info_dict, audio_file = process_local_file(path)
else:
logging.error(f"File does not exist: {path}")
continue
if info_dict:
logging.debug("MAIN: Creating transcription file from WAV")
segments = speech_to_text(audio_file, whisper_model=whisper_model, vad_filter=vad_filter)
transcription_result = {
'video_path': path,
'audio_file': audio_file,
'transcription': segments
}
if isinstance(segments, dict) and "error" in segments:
logging.error(f"Error transcribing audio: {segments['error']}")
transcription_result['error'] = segments['error']
results.append(transcription_result)
logging.info(f"MAIN: Transcription complete: {audio_file}")
# Check if segments is a dictionary before proceeding with summarization
if isinstance(segments, dict):
logging.warning("Skipping summarization due to transcription error")
continue
# FIXME
# Perform rolling summarization based on API Name, detail level, and if an API key exists
# Will remove the API key once rolling is added for llama.cpp
# FIXME - Add input for model name for tabby and vllm
if rolling_summarization:
logging.info("MAIN: Rolling Summarization")
api_key = openai_api_key
global client
client = OpenAI(api_key)
# Extract the text from the segments
text = extract_text_from_segments(segments)
# Set the json_file_path
json_file_path = audio_file.replace('.wav', '.segments.json')
# Perform rolling summarization
summary = summarize_with_detail_openai(text, detail=detail_level, verbose=False)
# Handle the summarized output
if summary:
transcription_result['summary'] = summary
logging.info("MAIN: Rolling Summarization successful.")
save_summary_to_file(summary, json_file_path)
else:
logging.warning("MAIN: Rolling Summarization failed.")
# Perform summarization based on the specified API
elif api_name:
logging.debug(f"MAIN: Summarization being performed by {api_name}")
json_file_path = audio_file.replace('.wav', '.segments.json')
if api_name.lower() == 'openai':
openai_api_key = api_key if api_key else config.get('API', 'openai_api_key',
fallback=None)
try:
logging.debug(f"MAIN: trying to summarize with openAI")
summary = summarize_with_openai(openai_api_key, json_file_path, custom_prompt)
if summary != "openai: Error occurred while processing summary":
transcription_result['summary'] = summary
logging.info(f"Summary generated using {api_name} API")
save_summary_to_file(summary, json_file_path)
# Add media to the database
add_media_with_keywords(
url=path,
title=info_dict.get('title', 'Untitled'),
media_type='video',
content=' '.join([segment['text'] for segment in segments]),
keywords=','.join(keywords),
prompt=custom_prompt or 'No prompt provided',
summary=summary or 'No summary provided',
transcription_model=whisper_model,
author=info_dict.get('uploader', 'Unknown'),
ingestion_date=datetime.now().strftime('%Y-%m-%d')
)
else:
logging.warning(f"Failed to generate summary using {api_name} API")
except requests.exceptions.ConnectionError:
requests.status_code = "Connection: "
elif api_name.lower() == "anthropic":
anthropic_api_key = api_key if api_key else config.get('API', 'anthropic_api_key',
fallback=None)
try:
logging.debug(f"MAIN: Trying to summarize with anthropic")
summary = summarize_with_claude(anthropic_api_key, json_file_path, anthropic_model,
custom_prompt)
except requests.exceptions.ConnectionError:
requests.status_code = "Connection: "
elif api_name.lower() == "cohere":
cohere_api_key = os.getenv('COHERE_TOKEN').replace('"', '') if api_key is None else api_key
try:
logging.debug(f"MAIN: Trying to summarize with cohere")
summary = summarize_with_cohere(cohere_api_key, json_file_path, cohere_model, custom_prompt)
except requests.exceptions.ConnectionError:
requests.status_code = "Connection: "
elif api_name.lower() == "groq":
groq_api_key = api_key if api_key else config.get('API', 'groq_api_key', fallback=None)
try:
logging.debug(f"MAIN: Trying to summarize with Groq")
summary = summarize_with_groq(groq_api_key, json_file_path, groq_model, custom_prompt)
except requests.exceptions.ConnectionError:
requests.status_code = "Connection: "
elif api_name.lower() == "openrouter":
openrouter_api_key = api_key if api_key else config.get('API', 'openrouter_api_key',
fallback=None)
try:
logging.debug(f"MAIN: Trying to summarize with OpenRouter")
summary = summarize_with_openrouter(openrouter_api_key, json_file_path, custom_prompt)
except requests.exceptions.ConnectionError:
requests.status_code = "Connection: "
elif api_name.lower() == "llama":
llama_token = api_key if api_key else config.get('API', 'llama_api_key', fallback=None)
llama_ip = llama_api_IP
try:
logging.debug(f"MAIN: Trying to summarize with Llama.cpp")
summary = summarize_with_llama(llama_ip, json_file_path, llama_token, custom_prompt)
except requests.exceptions.ConnectionError:
requests.status_code = "Connection: "
elif api_name.lower() == "kobold":
kobold_token = api_key if api_key else config.get('API', 'kobold_api_key', fallback=None)
kobold_ip = kobold_api_IP
try:
logging.debug(f"MAIN: Trying to summarize with kobold.cpp")
summary = summarize_with_kobold(kobold_ip, json_file_path, kobold_token, custom_prompt)
except requests.exceptions.ConnectionError:
requests.status_code = "Connection: "
elif api_name.lower() == "ooba":
ooba_token = api_key if api_key else config.get('API', 'ooba_api_key', fallback=None)
ooba_ip = ooba_api_IP
try:
logging.debug(f"MAIN: Trying to summarize with oobabooga")
summary = summarize_with_oobabooga(ooba_ip, json_file_path, ooba_token, custom_prompt)
except requests.exceptions.ConnectionError:
requests.status_code = "Connection: "
elif api_name.lower() == "tabbyapi":
tabbyapi_key = api_key if api_key else config.get('API', 'tabby_api_key', fallback=None)
tabbyapi_ip = tabby_api_IP
try:
logging.debug(f"MAIN: Trying to summarize with tabbyapi")
tabby_model = llm_model
summary = summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, json_file_path, tabby_model,
custom_prompt)
except requests.exceptions.ConnectionError:
requests.status_code = "Connection: "
elif api_name.lower() == "vllm":
logging.debug(f"MAIN: Trying to summarize with VLLM")
summary = summarize_with_vllm(vllm_api_url, vllm_api_key, llm_model, json_file_path,
custom_prompt)
elif api_name.lower() == "local-llm":
logging.debug(f"MAIN: Trying to summarize with the local LLM, Mistral Instruct v0.2")
local_llm_url = "http://127.0.0.1:8080"
summary = summarize_with_local_llm(json_file_path, custom_prompt)
elif api_name.lower() == "huggingface":
huggingface_api_key = api_key if api_key else config.get('API', 'huggingface_api_key',
fallback=None)
try:
logging.debug(f"MAIN: Trying to summarize with huggingface")
summarize_with_huggingface(huggingface_api_key, json_file_path, custom_prompt)
except requests.exceptions.ConnectionError:
requests.status_code = "Connection: "
else:
logging.warning(f"Unsupported API: {api_name}")
summary = None
if summary:
transcription_result['summary'] = summary
logging.info(f"Summary generated using {api_name} API")
save_summary_to_file(summary, json_file_path)
# FIXME
# elif final_summary:
# logging.info(f"Rolling summary generated using {api_name} API")
# logging.info(f"Final Rolling summary is {final_summary}\n\n")
# save_summary_to_file(final_summary, json_file_path)
else:
logging.warning(f"Failed to generate summary using {api_name} API")
else:
logging.info("MAIN: #2 - No API specified. Summarization will not be performed")
# Add media to the database
add_media_with_keywords(
url=path,
title=info_dict.get('title', 'Untitled'),
media_type='video',
content=' '.join([segment['text'] for segment in segments]),
keywords=','.join(keywords),
prompt=custom_prompt or 'No prompt provided',
summary=summary or 'No summary provided',
transcription_model=whisper_model,
author=info_dict.get('uploader', 'Unknown'),
ingestion_date=datetime.now().strftime('%Y-%m-%d')
)
except Exception as e:
logging.error(f"Error processing {path}: {str(e)}")
logging.error(str(e))
continue
# end_time = time.monotonic()
# print("Total program execution time: " + timedelta(seconds=end_time - start_time))
return results
def signal_handler(sig, frame):
logging.info('Signal handler called with signal: %s', sig)
cleanup_process()
sys.exit(0)
############################## MAIN ##############################
#
#
if __name__ == "__main__":
# Register signal handlers
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
# Establish logging baseline
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
print_hello()
parser = argparse.ArgumentParser(
description='Transcribe and summarize videos.',
epilog='''
Sample commands:
1. Simple Sample command structure:
summarize.py <path_to_video> -api openai -k tag_one tag_two tag_three
2. Rolling Summary Sample command structure:
summarize.py <path_to_video> -api openai -prompt "custom_prompt_goes_here-is-appended-after-transcription" -roll -detail 0.01 -k tag_one tag_two tag_three
3. FULL Sample command structure:
summarize.py <path_to_video> -api openai -ns 2 -wm small.en -off 0 -vad -log INFO -prompt "custom_prompt" -overwrite -roll -detail 0.01 -k tag_one tag_two tag_three
4. Sample command structure for UI:
summarize.py -gui -log DEBUG
''',
formatter_class=argparse.RawTextHelpFormatter
)
parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?')
parser.add_argument('-v', '--video', action='store_true', help='Download the video instead of just the audio')
parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)')
parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)')
parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)')
parser.add_argument('-wm', '--whisper_model', type=str, default='small.en',
help='Whisper model (default: small.en)')
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
parser.add_argument('-log', '--log_level', type=str, default='DEBUG',
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)')
parser.add_argument('-gui', '--user_interface', action='store_true', help="Launch the Gradio user interface")
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
parser.add_argument('-prompt', '--custom_prompt', type=str,
help='Pass in a custom prompt to be used in place of the existing one.\n (Probably should just '
'modify the script itself...)')
parser.add_argument('-overwrite', '--overwrite', action='store_true', help='Overwrite existing files')
parser.add_argument('-roll', '--rolling_summarization', action='store_true', help='Enable rolling summarization')
parser.add_argument('-detail', '--detail_level', type=float, help='Mandatory if rolling summarization is enabled, '
'defines the chunk size.\n Default is 0.01(lots '
'of chunks) -> 1.00 (few chunks)\n Currently '
'only OpenAI works. ',
default=0.01, )
parser.add_argument('-model', '--llm_model', type=str, default='',
help='Model to use for LLM summarization (only used for vLLM/TabbyAPI)')
parser.add_argument('-k', '--keywords', nargs='+', default=['cli_ingest_no_tag'],
help='Keywords for tagging the media, can use multiple separated by spaces (default: cli_ingest_no_tag)')
parser.add_argument('--log_file', type=str, help='Where to save logfile (non-default)')
parser.add_argument('--local_llm', action='store_true',
help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)")
parser.add_argument('--server_mode', action='store_true',
help='Run in server mode (This exposes the GUI/Server to the network)')
parser.add_argument('--share_public', type=int, default=7860,
help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)")
parser.add_argument('--port', type=int, default=7860, help='Port to run the server on')
#parser.add_argument('--offload', type=int, default=20, help='Numbers of layers to offload to GPU for Llamafile usage')
# parser.add_argument('-o', '--output_path', type=str, help='Path to save the output file')
args = parser.parse_args()
# Set Chunking values/variables
set_chunk_txt_by_words = False
set_max_txt_chunk_words = 0
set_chunk_txt_by_sentences = False
set_max_txt_chunk_sentences = 0
set_chunk_txt_by_paragraphs = False
set_max_txt_chunk_paragraphs = 0
set_chunk_txt_by_tokens = False
set_max_txt_chunk_tokens = 0
if args.share_public:
share_public = args.share_public
else:
share_public = None
if args.server_mode:
server_mode = args.server_mode
else:
server_mode = None
if args.server_mode is True:
server_mode = True
if args.port:
server_port = args.port
else:
server_port = None
########## Logging setup
logger = logging.getLogger()
logger.setLevel(getattr(logging, args.log_level))
# Create console handler
console_handler = logging.StreamHandler()
console_handler.setLevel(getattr(logging, args.log_level))
console_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
console_handler.setFormatter(console_formatter)
if args.log_file:
# Create file handler
file_handler = logging.FileHandler(args.log_file)
file_handler.setLevel(getattr(logging, args.log_level))
file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler.setFormatter(file_formatter)
logger.addHandler(file_handler)
logger.info(f"Log file created at: {args.log_file}")
########## Custom Prompt setup
custom_prompt = args.custom_prompt
if not args.custom_prompt:
logging.debug("No custom prompt defined, will use default")
args.custom_prompt = (
"\n\nabove is the transcript of a video. "
"Please read through the transcript carefully. Identify the main topics that are "
"discussed over the course of the transcript. Then, summarize the key points about each "
"main topic in a concise bullet point. The bullet points should cover the key "
"information conveyed about each topic in the video, but should be much shorter than "
"the full transcript. Please output your bullet point summary inside <bulletpoints> "
"tags."
)
print("No custom prompt defined, will use default")
custom_prompt = args.custom_prompt
else:
logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt} \n\nas the prompt")
print(f"Custom Prompt has been defined. Custom prompt: \n\n {args.custom_prompt}")
# Check if the user wants to use the local LLM from the script
local_llm = args.local_llm
logging.info(f'Local LLM flag: {local_llm}')
if args.user_interface:
if local_llm:
local_llm_function()
time.sleep(2)
webbrowser.open_new_tab('http://127.0.0.1:7860')
launch_ui(demo_mode=False)
else:
if not args.input_path:
parser.print_help()
launch_ui(demo_mode=False)
logging.info('Starting the transcription and summarization process.')
logging.info(f'Input path: {args.input_path}')
logging.info(f'API Name: {args.api_name}')
logging.info(f'Number of speakers: {args.num_speakers}')
logging.info(f'Whisper model: {args.whisper_model}')
logging.info(f'Offset: {args.offset}')
logging.info(f'VAD filter: {args.vad_filter}')
logging.info(f'Log Level: {args.log_level}')
logging.info(f'Demo Mode: {args.demo_mode}')
logging.info(f'Custom Prompt: {args.custom_prompt}')
logging.info(f'Overwrite: {args.overwrite}')
logging.info(f'Rolling Summarization: {args.rolling_summarization}')
logging.info(f'User Interface: {args.user_interface}')
logging.info(f'Video Download: {args.video}')
# logging.info(f'Save File location: {args.output_path}')
# logging.info(f'Log File location: {args.log_file}')
# Get all API keys from the config
api_keys = {key: value for key, value in config.items('API') if key.endswith('_api_key')}
api_name = args.api_name
# Rolling Summarization will only be performed if an API is specified and the API key is available
# and the rolling summarization flag is set
#
summary = None # Initialize to ensure it's always defined
if args.detail_level == None:
args.detail_level = 0.01
if args.api_name and args.rolling_summarization and any(
key.startswith(args.api_name) and value is not None for key, value in api_keys.items()):
logging.info(f'MAIN: API used: {args.api_name}')
logging.info('MAIN: Rolling Summarization will be performed.')
elif args.api_name:
logging.info(f'MAIN: API used: {args.api_name}')
logging.info('MAIN: Summarization (not rolling) will be performed.')
else:
logging.info('No API specified. Summarization will not be performed.')
logging.debug("Platform check being performed...")
platform_check()
logging.debug("CUDA check being performed...")
cuda_check()
logging.debug("ffmpeg check being performed...")
check_ffmpeg()
#download_ffmpeg()
llm_model = args.llm_model or None
try:
results = main(args.input_path, api_name=args.api_name,
api_key=args.api_key,
num_speakers=args.num_speakers,
whisper_model=args.whisper_model,
offset=args.offset,
vad_filter=args.vad_filter,
download_video_flag=args.video,
custom_prompt=args.custom_prompt,
overwrite=args.overwrite,
rolling_summarization=args.rolling_summarization,
detail=args.detail_level,
keywords=args.keywords,
llm_model=args.llm_model,
time_based=args.time_based,
set_chunk_txt_by_words=set_chunk_txt_by_words,
set_max_txt_chunk_words=set_max_txt_chunk_words,
set_chunk_txt_by_sentences=set_chunk_txt_by_sentences,
set_max_txt_chunk_sentences=set_max_txt_chunk_sentences,
set_chunk_txt_by_paragraphs=set_chunk_txt_by_paragraphs,
set_max_txt_chunk_paragraphs=set_max_txt_chunk_paragraphs,
set_chunk_txt_by_tokens=set_chunk_txt_by_tokens,
set_max_txt_chunk_tokens=set_max_txt_chunk_tokens,
)
logging.info('Transcription process completed.')
atexit.register(cleanup_process)
except Exception as e:
logging.error('An error occurred during the transcription process.')
logging.error(str(e))
sys.exit(1)
finally:
cleanup_process()
|