Spaces:
Running
Running
oceansweep
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,22 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
-
import
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import zipfile
|
5 |
-
|
6 |
-
import
|
7 |
-
import ffmpeg
|
8 |
import torch
|
9 |
import yt_dlp
|
10 |
|
11 |
-
|
12 |
#######
|
13 |
# Function Sections
|
14 |
#
|
@@ -34,7 +42,6 @@ import yt_dlp
|
|
34 |
#
|
35 |
|
36 |
|
37 |
-
|
38 |
####
|
39 |
#
|
40 |
# TL/DW: Too Long Didn't Watch
|
@@ -52,8 +59,10 @@ import yt_dlp
|
|
52 |
# Download Audio+Video from URL -> Transcribe audio from Video:**
|
53 |
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s`
|
54 |
#
|
55 |
-
#
|
56 |
-
#
|
|
|
|
|
57 |
#
|
58 |
# Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:**
|
59 |
# python summarize.py ./local/file_on_your/system --api_name <API_name>`
|
@@ -89,7 +98,6 @@ logging.debug(f"Loaded openAI Face API Key: {openai_api_key}")
|
|
89 |
huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None)
|
90 |
logging.debug(f"Loaded HuggingFace Face API Key: {huggingface_api_key}")
|
91 |
|
92 |
-
|
93 |
# Models
|
94 |
anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229')
|
95 |
cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus')
|
@@ -119,9 +127,9 @@ processing_choice = config.get('Processing', 'processing_choice', fallback='cpu'
|
|
119 |
#######################
|
120 |
|
121 |
# Dirty hack - sue me.
|
122 |
-
os.environ['KMP_DUPLICATE_LIB_OK']='True'
|
123 |
|
124 |
-
whisper_models = ["small", "medium", "small.en","medium.en"]
|
125 |
source_languages = {
|
126 |
"en": "English",
|
127 |
"zh": "Chinese",
|
@@ -133,10 +141,8 @@ source_languages = {
|
|
133 |
}
|
134 |
source_language_list = [key[0] for key in source_languages.items()]
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
print(r"""_____ _ ________ _ _
|
140 |
|_ _|| | / /| _ \| | | | _
|
141 |
| | | | / / | | | || | | |(_)
|
142 |
| | | | / / | | | || |/\| |
|
@@ -167,6 +173,8 @@ print(r"""_____ _ ________ _ _
|
|
167 |
|
168 |
# Perform Platform Check
|
169 |
userOS = ""
|
|
|
|
|
170 |
def platform_check():
|
171 |
global userOS
|
172 |
if platform.system() == "Linux":
|
@@ -180,7 +188,6 @@ def platform_check():
|
|
180 |
exit()
|
181 |
|
182 |
|
183 |
-
|
184 |
# Check for NVIDIA GPU and CUDA availability
|
185 |
def cuda_check():
|
186 |
global processing_choice
|
@@ -197,7 +204,6 @@ def cuda_check():
|
|
197 |
processing_choice = "cpu" # Set processing_choice to cpu if nvidia-smi command fails
|
198 |
|
199 |
|
200 |
-
|
201 |
# Ask user if they would like to use either their GPU or their CPU for transcription
|
202 |
def decide_cpugpu():
|
203 |
global processing_choice
|
@@ -214,7 +220,6 @@ def decide_cpugpu():
|
|
214 |
print("Invalid choice. Please select either GPU or CPU.")
|
215 |
|
216 |
|
217 |
-
|
218 |
# check for existence of ffmpeg
|
219 |
def check_ffmpeg():
|
220 |
if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")):
|
@@ -222,20 +227,21 @@ def check_ffmpeg():
|
|
222 |
pass
|
223 |
else:
|
224 |
logging.debug("ffmpeg not installed on the local system/in local PATH")
|
225 |
-
print(
|
|
|
226 |
if userOS == "Windows":
|
227 |
download_ffmpeg()
|
228 |
elif userOS == "Linux":
|
229 |
-
print(
|
|
|
230 |
else:
|
231 |
logging.debug("running an unsupported OS")
|
232 |
-
print("You're running an
|
233 |
exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)")
|
234 |
if exit_script == "y" or "yes" or "1":
|
235 |
exit()
|
236 |
|
237 |
|
238 |
-
|
239 |
# Download ffmpeg
|
240 |
def download_ffmpeg():
|
241 |
user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ")
|
@@ -243,33 +249,33 @@ def download_ffmpeg():
|
|
243 |
print("Downloading ffmpeg")
|
244 |
url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip"
|
245 |
response = requests.get(url)
|
246 |
-
|
247 |
if response.status_code == 200:
|
248 |
print("Saving ffmpeg zip file")
|
249 |
logging.debug("Saving ffmpeg zip file")
|
250 |
zip_path = "ffmpeg-release-essentials.zip"
|
251 |
with open(zip_path, 'wb') as file:
|
252 |
file.write(response.content)
|
253 |
-
|
254 |
logging.debug("Extracting the 'ffmpeg.exe' file from the zip")
|
255 |
print("Extracting ffmpeg.exe from zip file to '/Bin' folder")
|
256 |
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
257 |
ffmpeg_path = "ffmpeg-7.0-essentials_build/bin/ffmpeg.exe"
|
258 |
-
|
259 |
logging.debug("checking if the './Bin' folder exists, creating if not")
|
260 |
bin_folder = "Bin"
|
261 |
if not os.path.exists(bin_folder):
|
262 |
logging.debug("Creating a folder for './Bin', it didn't previously exist")
|
263 |
os.makedirs(bin_folder)
|
264 |
-
|
265 |
logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder")
|
266 |
zip_ref.extract(ffmpeg_path, path=bin_folder)
|
267 |
-
|
268 |
logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder")
|
269 |
src_path = os.path.join(bin_folder, ffmpeg_path)
|
270 |
dst_path = os.path.join(bin_folder, "ffmpeg.exe")
|
271 |
shutil.move(src_path, dst_path)
|
272 |
-
|
273 |
logging.debug("Removing ffmpeg zip file")
|
274 |
print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)")
|
275 |
os.remove(zip_path)
|
@@ -283,16 +289,12 @@ def download_ffmpeg():
|
|
283 |
logging.debug("User chose to not download ffmpeg")
|
284 |
print("ffmpeg will not be downloaded.")
|
285 |
|
286 |
-
|
|
|
287 |
#
|
288 |
####################################################################################################################################
|
289 |
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
####################################################################################################################################
|
297 |
# Processing Paths and local file handling
|
298 |
#
|
@@ -304,13 +306,13 @@ def read_paths_from_file(file_path):
|
|
304 |
with open(file_path, 'r') as file:
|
305 |
for line in file:
|
306 |
line = line.strip()
|
307 |
-
if line and not os.path.exists(
|
|
|
308 |
logging.debug("line successfully imported from file and added to list to be transcribed")
|
309 |
paths.append(line)
|
310 |
return paths
|
311 |
|
312 |
|
313 |
-
|
314 |
def process_path(path):
|
315 |
""" Decides whether the path is a URL or a local file and processes accordingly. """
|
316 |
if path.startswith('http'):
|
@@ -324,7 +326,6 @@ def process_path(path):
|
|
324 |
return None
|
325 |
|
326 |
|
327 |
-
|
328 |
# FIXME
|
329 |
def process_local_file(file_path):
|
330 |
logging.info(f"Processing local file: {file_path}")
|
@@ -334,31 +335,32 @@ def process_local_file(file_path):
|
|
334 |
download_path = create_download_directory(title)
|
335 |
logging.debug(f"Converting '{title}' to an audio file (wav).")
|
336 |
audio_file = convert_to_wav(file_path) # Assumes input files are videos needing audio extraction
|
337 |
-
logging.debug(f"'{title}'
|
338 |
return download_path, info_dict, audio_file
|
339 |
-
#
|
340 |
-
#
|
341 |
-
####################################################################################################################################
|
342 |
-
|
343 |
-
|
344 |
|
345 |
|
|
|
|
|
|
|
346 |
|
347 |
|
348 |
####################################################################################################################################
|
349 |
# Video Download/Handling
|
350 |
#
|
351 |
|
352 |
-
def process_url(input_path, num_speakers=2, whisper_model="small.en",
|
|
|
353 |
if demo_mode:
|
354 |
api_name = "huggingface"
|
355 |
api_key = os.environ.get(HF_TOKEN)
|
356 |
print("HUGGINGFACE API KEY CHECK #3: " + api_key)
|
357 |
vad_filter = False
|
358 |
download_video_flag = False
|
359 |
-
|
360 |
try:
|
361 |
-
results = main(input_path, api_name=api_name, api_key=api_key, num_speakers=num_speakers,
|
|
|
|
|
362 |
|
363 |
if results:
|
364 |
transcription_result = results[0]
|
@@ -382,7 +384,6 @@ def process_url(input_path, num_speakers=2, whisper_model="small.en", offset=0,
|
|
382 |
return None, error_message, None, None
|
383 |
|
384 |
|
385 |
-
|
386 |
def create_download_directory(title):
|
387 |
base_dir = "Results"
|
388 |
# Remove characters that are illegal in Windows filenames and normalize
|
@@ -397,15 +398,15 @@ def create_download_directory(title):
|
|
397 |
return session_path
|
398 |
|
399 |
|
400 |
-
|
401 |
def normalize_title(title):
|
402 |
# Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters
|
403 |
title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii')
|
404 |
-
title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?',
|
|
|
|
|
405 |
return title
|
406 |
|
407 |
|
408 |
-
|
409 |
def get_youtube(video_url):
|
410 |
ydl_opts = {
|
411 |
'format': 'bestaudio[ext=m4a]',
|
@@ -420,7 +421,6 @@ def get_youtube(video_url):
|
|
420 |
return info_dict
|
421 |
|
422 |
|
423 |
-
|
424 |
def get_playlist_videos(playlist_url):
|
425 |
ydl_opts = {
|
426 |
'extract_flat': True,
|
@@ -440,18 +440,16 @@ def get_playlist_videos(playlist_url):
|
|
440 |
return [], None
|
441 |
|
442 |
|
443 |
-
|
444 |
def save_to_file(video_urls, filename):
|
445 |
with open(filename, 'w') as file:
|
446 |
file.write('\n'.join(video_urls))
|
447 |
print(f"Video URLs saved to {filename}")
|
448 |
|
449 |
|
450 |
-
|
451 |
def download_video(video_url, download_path, info_dict, download_video_flag):
|
452 |
logging.debug("About to normalize downloaded video title")
|
453 |
title = normalize_title(info_dict['title'])
|
454 |
-
|
455 |
if download_video_flag == False:
|
456 |
file_path = os.path.join(download_path, f"{title}.m4a")
|
457 |
ydl_opts = {
|
@@ -474,12 +472,12 @@ def download_video(video_url, download_path, info_dict, download_video_flag):
|
|
474 |
'format': 'bestaudio[ext=m4a]',
|
475 |
'outtmpl': audio_file_path,
|
476 |
}
|
477 |
-
|
478 |
with yt_dlp.YoutubeDL(ydl_opts_video) as ydl:
|
479 |
logging.debug("yt_dlp: About to download video with youtube-dl")
|
480 |
ydl.download([video_url])
|
481 |
logging.debug("yt_dlp: Video successfully downloaded with youtube-dl")
|
482 |
-
|
483 |
with yt_dlp.YoutubeDL(ydl_opts_audio) as ydl:
|
484 |
logging.debug("yt_dlp: About to download audio with youtube-dl")
|
485 |
ydl.download([video_url])
|
@@ -508,17 +506,14 @@ def download_video(video_url, download_path, info_dict, download_video_flag):
|
|
508 |
'-c:a', 'copy',
|
509 |
output_file_path
|
510 |
]
|
511 |
-
subprocess.run(ffmpeg_command, check=True)
|
512 |
else:
|
513 |
logging.error("You shouldn't be here...")
|
514 |
exit()
|
515 |
os.remove(video_file_path)
|
516 |
os.remove(audio_file_path)
|
517 |
-
|
518 |
-
return output_file_path
|
519 |
-
|
520 |
-
|
521 |
|
|
|
522 |
|
523 |
|
524 |
#
|
@@ -526,10 +521,6 @@ def download_video(video_url, download_path, info_dict, download_video_flag):
|
|
526 |
####################################################################################################################################
|
527 |
|
528 |
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
####################################################################################################################################
|
534 |
# Audio Transcription
|
535 |
#
|
@@ -553,12 +544,12 @@ def convert_to_wav(video_file_path, offset=0):
|
|
553 |
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
|
554 |
|
555 |
command = [
|
556 |
-
ffmpeg_cmd,
|
557 |
-
"-ss", "00:00:00",
|
558 |
"-i", video_file_path,
|
559 |
-
"-ar", "16000",
|
560 |
-
"-ac", "1",
|
561 |
-
"-c:a", "pcm_s16le",
|
562 |
out_path
|
563 |
]
|
564 |
try:
|
@@ -590,7 +581,6 @@ def convert_to_wav(video_file_path, offset=0):
|
|
590 |
return out_path
|
591 |
|
592 |
|
593 |
-
|
594 |
# Transcribe .wav into .segments.json
|
595 |
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False):
|
596 |
logging.info('Loading faster_whisper model: %s', whisper_model)
|
@@ -609,7 +599,7 @@ def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='sm
|
|
609 |
with open(out_file) as f:
|
610 |
segments = json.load(f)
|
611 |
return segments
|
612 |
-
|
613 |
logging.info('Starting transcription...')
|
614 |
options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter)
|
615 |
transcribe_options = dict(task="transcribe", **options)
|
@@ -631,139 +621,133 @@ def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='sm
|
|
631 |
logging.error("Error transcribing audio: %s", str(e))
|
632 |
raise RuntimeError("Error transcribing audio")
|
633 |
return segments
|
|
|
|
|
634 |
#
|
635 |
#
|
636 |
####################################################################################################################################
|
637 |
|
638 |
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
####################################################################################################################################
|
644 |
# Diarization
|
645 |
#
|
646 |
# TODO: https://huggingface.co/pyannote/speaker-diarization-3.1
|
647 |
# embedding_model = "pyannote/embedding", embedding_size=512
|
648 |
# embedding_model = "speechbrain/spkrec-ecapa-voxceleb", embedding_size=192
|
649 |
-
def speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0):
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
#
|
759 |
#
|
760 |
####################################################################################################################################
|
761 |
|
762 |
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
####################################################################################################################################
|
768 |
#Summarizers
|
769 |
#
|
@@ -776,13 +760,12 @@ def extract_text_from_segments(segments):
|
|
776 |
return text
|
777 |
|
778 |
|
779 |
-
|
780 |
-
def summarize_with_openai(api_key, file_path, model):
|
781 |
try:
|
782 |
logging.debug("openai: Loading json data for summarization")
|
783 |
with open(file_path, 'r') as file:
|
784 |
segments = json.load(file)
|
785 |
-
|
786 |
logging.debug("openai: Extracting text from the segments")
|
787 |
text = extract_text_from_segments(segments)
|
788 |
|
@@ -790,9 +773,14 @@ def summarize_with_openai(api_key, file_path, model):
|
|
790 |
'Authorization': f'Bearer {api_key}',
|
791 |
'Content-Type': 'application/json'
|
792 |
}
|
793 |
-
|
|
|
|
|
|
|
|
|
|
|
794 |
logging.debug("openai: Preparing data + prompt for submittal")
|
795 |
-
openai_prompt = f"{text} \n\n\n\n{
|
796 |
data = {
|
797 |
"model": model,
|
798 |
"messages": [
|
@@ -810,7 +798,7 @@ def summarize_with_openai(api_key, file_path, model):
|
|
810 |
}
|
811 |
logging.debug("openai: Posting request")
|
812 |
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
|
813 |
-
|
814 |
if response.status_code == 200:
|
815 |
summary = response.json()['choices'][0]['message']['content'].strip()
|
816 |
logging.debug("openai: Summarization successful")
|
@@ -826,13 +814,12 @@ def summarize_with_openai(api_key, file_path, model):
|
|
826 |
return None
|
827 |
|
828 |
|
829 |
-
|
830 |
-
def summarize_with_claude(api_key, file_path, model):
|
831 |
try:
|
832 |
logging.debug("anthropic: Loading JSON data")
|
833 |
with open(file_path, 'r') as file:
|
834 |
segments = json.load(file)
|
835 |
-
|
836 |
logging.debug("anthropic: Extracting text from the segments file")
|
837 |
text = extract_text_from_segments(segments)
|
838 |
|
@@ -841,16 +828,17 @@ def summarize_with_claude(api_key, file_path, model):
|
|
841 |
'anthropic-version': '2023-06-01',
|
842 |
'Content-Type': 'application/json'
|
843 |
}
|
844 |
-
|
845 |
-
|
|
|
846 |
user_message = {
|
847 |
"role": "user",
|
848 |
-
"content": f"{text} \n\n\n\n{
|
849 |
}
|
850 |
|
851 |
data = {
|
852 |
"model": model,
|
853 |
-
"max_tokens": 4096,
|
854 |
"messages": [user_message],
|
855 |
"stop_sequences": ["\n\nHuman:"],
|
856 |
"temperature": 0.7,
|
@@ -862,17 +850,17 @@ def summarize_with_claude(api_key, file_path, model):
|
|
862 |
"stream": False,
|
863 |
"system": "You are a professional summarizer."
|
864 |
}
|
865 |
-
|
866 |
logging.debug("anthropic: Posting request to API")
|
867 |
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
|
868 |
-
|
869 |
# Check if the status code indicates success
|
870 |
if response.status_code == 200:
|
871 |
logging.debug("anthropic: Post submittal successful")
|
872 |
response_data = response.json()
|
873 |
try:
|
874 |
summary = response_data['content'][0]['text'].strip()
|
875 |
-
logging.debug("anthropic: Summarization
|
876 |
print("Summary processed successfully.")
|
877 |
return summary
|
878 |
except (IndexError, KeyError) as e:
|
@@ -894,9 +882,8 @@ def summarize_with_claude(api_key, file_path, model):
|
|
894 |
return None
|
895 |
|
896 |
|
897 |
-
|
898 |
# Summarize with Cohere
|
899 |
-
def summarize_with_cohere(api_key, file_path, model):
|
900 |
try:
|
901 |
logging.basicConfig(level=logging.DEBUG)
|
902 |
logging.debug("cohere: Loading JSON data")
|
@@ -912,7 +899,9 @@ def summarize_with_cohere(api_key, file_path, model):
|
|
912 |
'Authorization': f'Bearer {api_key}'
|
913 |
}
|
914 |
|
915 |
-
cohere_prompt = f"{text} \n\n\n\n{
|
|
|
|
|
916 |
data = {
|
917 |
"chat_history": [
|
918 |
{"role": "USER", "message": cohere_prompt}
|
@@ -938,7 +927,7 @@ def summarize_with_cohere(api_key, file_path, model):
|
|
938 |
logging.error("Expected data not found in API response.")
|
939 |
return "Expected data not found in API response."
|
940 |
else:
|
941 |
-
logging.error(f"cohere: API request failed with status code {response.status_code}: {
|
942 |
print(f"Failed to process summary, status code {response.status_code}: {response.text}")
|
943 |
return f"cohere: API request failed: {response.text}"
|
944 |
|
@@ -947,9 +936,8 @@ def summarize_with_cohere(api_key, file_path, model):
|
|
947 |
return f"cohere: Error occurred while processing summary with Cohere: {str(e)}"
|
948 |
|
949 |
|
950 |
-
|
951 |
# https://console.groq.com/docs/quickstart
|
952 |
-
def summarize_with_groq(api_key, file_path, model):
|
953 |
try:
|
954 |
logging.debug("groq: Loading JSON data")
|
955 |
with open(file_path, 'r') as file:
|
@@ -963,7 +951,9 @@ def summarize_with_groq(api_key, file_path, model):
|
|
963 |
'Content-Type': 'application/json'
|
964 |
}
|
965 |
|
966 |
-
groq_prompt = f"{text} \n\n\n\n{
|
|
|
|
|
967 |
data = {
|
968 |
"messages": [
|
969 |
{
|
@@ -1003,7 +993,7 @@ def summarize_with_groq(api_key, file_path, model):
|
|
1003 |
#
|
1004 |
# Local Summarization
|
1005 |
|
1006 |
-
def summarize_with_llama(api_url, file_path, token):
|
1007 |
try:
|
1008 |
logging.debug("llama: Loading JSON data")
|
1009 |
with open(file_path, 'r') as file:
|
@@ -1016,17 +1006,17 @@ def summarize_with_llama(api_url, file_path, token):
|
|
1016 |
'accept': 'application/json',
|
1017 |
'content-type': 'application/json',
|
1018 |
}
|
1019 |
-
if len(token)>5:
|
1020 |
headers['Authorization'] = f'Bearer {token}'
|
1021 |
|
|
|
|
|
1022 |
|
1023 |
-
llama_prompt = f"{text} \n\n\n\n{prompt_text}"
|
1024 |
-
logging.debug(f"llama: Complete prompt is: {llama_prompt}")
|
1025 |
data = {
|
1026 |
"prompt": llama_prompt
|
1027 |
}
|
1028 |
|
1029 |
-
|
1030 |
print("llama: Submitting request to API endpoint")
|
1031 |
response = requests.post(api_url, headers=headers, json=data)
|
1032 |
response_data = response.json()
|
@@ -1048,9 +1038,8 @@ def summarize_with_llama(api_url, file_path, token):
|
|
1048 |
return f"llama: Error occurred while processing summary with llama: {str(e)}"
|
1049 |
|
1050 |
|
1051 |
-
|
1052 |
# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate
|
1053 |
-
def summarize_with_kobold(api_url, file_path):
|
1054 |
try:
|
1055 |
logging.debug("kobold: Loading JSON data")
|
1056 |
with open(file_path, 'r') as file:
|
@@ -1063,9 +1052,11 @@ def summarize_with_kobold(api_url, file_path):
|
|
1063 |
'accept': 'application/json',
|
1064 |
'content-type': 'application/json',
|
1065 |
}
|
|
|
|
|
|
|
|
|
1066 |
# FIXME
|
1067 |
-
kobold_prompt = f"{text} \n\n\n\n{prompt_text}"
|
1068 |
-
logging.debug(kobold_prompt)
|
1069 |
# Values literally c/p from the api docs....
|
1070 |
data = {
|
1071 |
"max_context_length": 8096,
|
@@ -1097,9 +1088,8 @@ def summarize_with_kobold(api_url, file_path):
|
|
1097 |
return f"kobold: Error occurred while processing summary with kobold: {str(e)}"
|
1098 |
|
1099 |
|
1100 |
-
|
1101 |
# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API
|
1102 |
-
def summarize_with_oobabooga(api_url, file_path):
|
1103 |
try:
|
1104 |
logging.debug("ooba: Loading JSON data")
|
1105 |
with open(file_path, 'r') as file:
|
@@ -1114,14 +1104,15 @@ def summarize_with_oobabooga(api_url, file_path):
|
|
1114 |
'content-type': 'application/json',
|
1115 |
}
|
1116 |
|
1117 |
-
#prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a
|
1118 |
-
#prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable
|
1119 |
-
ooba_prompt =
|
|
|
1120 |
|
1121 |
-
data =
|
1122 |
"mode": "chat",
|
1123 |
"character": "Example",
|
1124 |
-
"messages": [{"role": "user", "content":
|
1125 |
}
|
1126 |
|
1127 |
logging.debug("ooba: Submitting request to API endpoint")
|
@@ -1144,7 +1135,6 @@ def summarize_with_oobabooga(api_url, file_path):
|
|
1144 |
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"
|
1145 |
|
1146 |
|
1147 |
-
|
1148 |
def save_summary_to_file(summary, file_path):
|
1149 |
summary_file_path = file_path.replace('.segments.json', '_summary.txt')
|
1150 |
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
|
@@ -1152,15 +1142,12 @@ def save_summary_to_file(summary, file_path):
|
|
1152 |
file.write(summary)
|
1153 |
logging.info(f"Summary saved to file: {summary_file_path}")
|
1154 |
|
|
|
1155 |
#
|
1156 |
#
|
1157 |
####################################################################################################################################
|
1158 |
|
1159 |
|
1160 |
-
|
1161 |
-
|
1162 |
-
|
1163 |
-
|
1164 |
####################################################################################################################################
|
1165 |
# Gradio UI
|
1166 |
#
|
@@ -1194,8 +1181,8 @@ def summarize_with_huggingface(api_key, file_path):
|
|
1194 |
response_data = response.json()
|
1195 |
wait_time = response_data.get('estimated_time', 10)
|
1196 |
return None, f"Model is loading, retrying in {int(wait_time)} seconds..."
|
1197 |
-
|
1198 |
-
|
1199 |
|
1200 |
if api_key == "":
|
1201 |
api_key = os.environ.get(HF_TOKEN)
|
@@ -1204,19 +1191,16 @@ def summarize_with_huggingface(api_key, file_path):
|
|
1204 |
logging.debug("huggingface: Loading json data for summarization")
|
1205 |
with open(file_path, 'r') as file:
|
1206 |
segments = json.load(file)
|
1207 |
-
|
1208 |
logging.debug("huggingface: Extracting text from the segments")
|
1209 |
text = ' '.join([segment['text'] for segment in segments])
|
1210 |
|
1211 |
api_key = os.environ.get(HF_TOKEN)
|
1212 |
logging.debug("HUGGINGFACE API KEY CHECK #2: " + api_key)
|
1213 |
|
1214 |
-
|
1215 |
-
|
1216 |
-
|
1217 |
logging.debug("huggingface: Submitting request...")
|
1218 |
response = requests.post(API_URL, headers=headers, json=data)
|
1219 |
-
|
1220 |
if response.status_code == 200:
|
1221 |
summary = response.json()[0]['summary_text']
|
1222 |
logging.debug("huggingface: Summarization successful")
|
@@ -1230,13 +1214,10 @@ def summarize_with_huggingface(api_key, file_path):
|
|
1230 |
print(f"Error occurred while processing summary with huggingface: {str(e)}")
|
1231 |
return None
|
1232 |
|
1233 |
-
|
1234 |
-
|
1235 |
def same_auth(username, password):
|
1236 |
return username == password
|
1237 |
|
1238 |
|
1239 |
-
|
1240 |
def format_transcription(transcription_result):
|
1241 |
if transcription_result:
|
1242 |
json_data = transcription_result['transcription']
|
@@ -1245,79 +1226,83 @@ def format_transcription(transcription_result):
|
|
1245 |
return ""
|
1246 |
|
1247 |
|
1248 |
-
|
1249 |
-
|
1250 |
-
summary,message = summarize_with_huggingface(api_key,text_file)
|
1251 |
if summary:
|
1252 |
# Show summary on success
|
1253 |
-
return "Summary:",summary
|
1254 |
else:
|
1255 |
# Inform user about load/wait time
|
1256 |
-
return "Notice:",message
|
1257 |
|
1258 |
|
1259 |
def launch_ui(demo_mode=False):
|
1260 |
-
def
|
1261 |
-
|
1262 |
-
|
1263 |
-
#
|
1264 |
-
|
1265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1266 |
|
1267 |
inputs = [
|
1268 |
-
gr.components.Textbox(label="URL
|
1269 |
-
gr.components.Number(value=2, label="Number of Speakers
|
1270 |
-
gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model
|
1271 |
-
gr.components.Textbox(label="Custom Prompt",
|
1272 |
-
gr.components.Number(value=0, label="Offset
|
|
|
|
|
|
|
|
|
|
|
|
|
1273 |
]
|
1274 |
|
1275 |
-
|
1276 |
-
|
1277 |
-
|
1278 |
-
|
1279 |
-
|
1280 |
-
|
1281 |
-
|
1282 |
|
1283 |
iface = gr.Interface(
|
1284 |
-
|
1285 |
-
# fn=lambda url, num_speakers, whisper_model, offset, api_name, custom_prompt, api_key: process_url(url, num_speakers, whisper_model, offset, api_name, api_key, demo_mode=demo_mode),
|
1286 |
-
fn=lambda *args: process_url(*args, demo_mode=demo_mode),
|
1287 |
-
|
1288 |
inputs=inputs,
|
1289 |
-
outputs=
|
1290 |
-
gr.components.Textbox(label="Transcription", value=lambda: "", max_lines=10),
|
1291 |
-
gr.components.Textbox(label="Summary or Status Message"),
|
1292 |
-
gr.components.File(label="Download Transcription as JSON"),
|
1293 |
-
gr.components.File(label="Download Summary as text", visible=lambda summary_file_path: summary_file_path is not None)
|
1294 |
-
],
|
1295 |
title="Video Transcription and Summarization",
|
1296 |
-
description="Submit a video URL for transcription and summarization.",
|
1297 |
-
|
1298 |
-
#https://huggingface.co/spaces/bethecloud/storj_theme
|
1299 |
-
theme="bethecloud/storj_theme"
|
1300 |
-
# FIXME - Figure out how to enable dark mode...
|
1301 |
-
# other themes: https://huggingface.co/spaces/gradio/theme-gallery
|
1302 |
)
|
1303 |
|
1304 |
-
iface.launch(share=
|
|
|
1305 |
|
1306 |
#
|
1307 |
#
|
1308 |
#####################################################################################################################################
|
1309 |
|
1310 |
|
1311 |
-
|
1312 |
-
|
1313 |
-
|
1314 |
-
|
1315 |
-
|
1316 |
####################################################################################################################################
|
1317 |
# Main()
|
1318 |
#
|
1319 |
|
1320 |
-
def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False,
|
|
|
1321 |
if input_path is None and args.user_interface:
|
1322 |
return []
|
1323 |
start_time = time.monotonic()
|
@@ -1330,7 +1315,8 @@ def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model=
|
|
1330 |
paths = [input_path]
|
1331 |
elif (info_dict := get_youtube(input_path)) and 'entries' in info_dict:
|
1332 |
logging.debug("MAIN: YouTube playlist detected")
|
1333 |
-
print(
|
|
|
1334 |
return
|
1335 |
else:
|
1336 |
paths = [input_path]
|
@@ -1350,7 +1336,7 @@ def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model=
|
|
1350 |
logging.debug("MAIN: Video downloaded successfully")
|
1351 |
logging.debug("MAIN: Converting video file to WAV...")
|
1352 |
audio_file = convert_to_wav(video_path, offset)
|
1353 |
-
logging.debug("MAIN: Audio file converted
|
1354 |
else:
|
1355 |
if os.path.exists(path):
|
1356 |
logging.debug("MAIN: Local file path detected")
|
@@ -1370,85 +1356,69 @@ def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model=
|
|
1370 |
results.append(transcription_result)
|
1371 |
logging.info(f"Transcription complete: {audio_file}")
|
1372 |
|
1373 |
-
if path.startswith('http'):
|
1374 |
-
# Delete the downloaded video file
|
1375 |
-
os.remove(video_path)
|
1376 |
-
logging.info(f"Deleted downloaded video file: {video_path}")
|
1377 |
-
|
1378 |
# Perform summarization based on the specified API
|
1379 |
if api_name and api_key:
|
1380 |
logging.debug(f"MAIN: Summarization being performed by {api_name}")
|
1381 |
json_file_path = audio_file.replace('.wav', '.segments.json')
|
1382 |
if api_name.lower() == 'openai':
|
|
|
1383 |
try:
|
1384 |
-
logging.debug(f"MAIN: trying to summarize with openAI")
|
1385 |
-
|
1386 |
-
logging.debug(f"OpenAI: OpenAI API Key: {api_key}")
|
1387 |
-
summary = summarize_with_openai(api_key, json_file_path, openai_model)
|
1388 |
except requests.exceptions.ConnectionError:
|
1389 |
-
|
1390 |
-
elif api_name.lower() ==
|
|
|
1391 |
try:
|
1392 |
-
logging.debug("MAIN: Trying to summarize with anthropic")
|
1393 |
-
|
1394 |
-
logging.debug(f"Anthropic: Anthropic API Key: {api_key}")
|
1395 |
-
summary = summarize_with_claude(api_key, json_file_path, anthropic_model)
|
1396 |
except requests.exceptions.ConnectionError:
|
1397 |
-
|
1398 |
-
elif api_name.lower() ==
|
|
|
1399 |
try:
|
1400 |
-
logging.debug("
|
1401 |
-
|
1402 |
-
logging.debug(f"Cohere: Cohere API Key: {api_key}")
|
1403 |
-
summary = summarize_with_cohere(api_key, json_file_path, cohere_model)
|
1404 |
except requests.exceptions.ConnectionError:
|
1405 |
-
|
1406 |
-
elif api_name.lower() ==
|
|
|
1407 |
try:
|
1408 |
-
logging.debug("
|
1409 |
-
|
1410 |
-
logging.debug(f"Groq: Groq API Key: {api_key}")
|
1411 |
-
summary = summarize_with_groq(api_key, json_file_path, groq_model)
|
1412 |
except requests.exceptions.ConnectionError:
|
1413 |
-
|
1414 |
-
elif api_name.lower() ==
|
|
|
|
|
1415 |
try:
|
1416 |
-
logging.debug("
|
1417 |
-
|
1418 |
-
logging.debug(f"Llama.cpp: Llama.cpp API Key: {api_key}")
|
1419 |
-
llama_ip = llama_api_IP
|
1420 |
-
logging.debug(f"Llama.cpp: Llama.cpp API IP:Port : {llama_ip}")
|
1421 |
-
summary = summarize_with_llama(llama_ip, json_file_path, token)
|
1422 |
except requests.exceptions.ConnectionError:
|
1423 |
-
|
1424 |
-
elif api_name.lower() ==
|
|
|
|
|
1425 |
try:
|
1426 |
-
logging.debug("
|
1427 |
-
|
1428 |
-
logging.debug(f"kobold.cpp: Kobold.cpp API Key: {api_key}")
|
1429 |
-
kobold_ip = kobold_api_IP
|
1430 |
-
logging.debug(f"kobold.cpp: Kobold.cpp API IP:Port : {kobold_api_IP}")
|
1431 |
-
summary = summarize_with_kobold(kobold_ip, json_file_path)
|
1432 |
except requests.exceptions.ConnectionError:
|
1433 |
-
|
1434 |
-
elif api_name.lower() ==
|
|
|
|
|
1435 |
try:
|
1436 |
-
logging.debug("
|
1437 |
-
|
1438 |
-
logging.debug(f"oobabooga: ooba API Key: {api_key}")
|
1439 |
-
ooba_ip = ooba_api_IP
|
1440 |
-
logging.debug(f"oobabooga: ooba API IP:Port : {ooba_ip}")
|
1441 |
-
summary = summarize_with_oobabooga(ooba_ip, json_file_path)
|
1442 |
except requests.exceptions.ConnectionError:
|
1443 |
-
|
1444 |
-
|
|
|
1445 |
try:
|
1446 |
-
logging.debug("MAIN: Trying to summarize with huggingface")
|
1447 |
-
api_key
|
1448 |
-
logging.debug(f"huggingface: huggingface API Key: {api_key}")
|
1449 |
-
summarize_with_huggingface(api_key, json_file_path)
|
1450 |
except requests.exceptions.ConnectionError:
|
1451 |
-
|
1452 |
|
1453 |
else:
|
1454 |
logging.warning(f"Unsupported API: {api_name}")
|
@@ -1471,28 +1441,28 @@ def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model=
|
|
1471 |
return results
|
1472 |
|
1473 |
|
1474 |
-
|
1475 |
if __name__ == "__main__":
|
1476 |
parser = argparse.ArgumentParser(description='Transcribe and summarize videos.')
|
1477 |
parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?')
|
1478 |
-
parser.add_argument('-v','--video',
|
1479 |
parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)')
|
1480 |
parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)')
|
1481 |
-
parser.add_argument('-wm', '--whisper_model', type=str, default='small.en',
|
|
|
1482 |
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
|
1483 |
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
|
1484 |
-
parser.add_argument('-log', '--log_level', type=str, default='INFO',
|
|
|
1485 |
parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface')
|
1486 |
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
|
1487 |
#parser.add_argument('--log_file', action=str, help='Where to save logfile (non-default)')
|
1488 |
args = parser.parse_args()
|
1489 |
-
|
1490 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
1491 |
# True
|
1492 |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
1493 |
# Tesla T4
|
1494 |
|
1495 |
-
|
1496 |
# Since this is running in HF....
|
1497 |
args.user_interface = True
|
1498 |
if args.user_interface:
|
@@ -1507,12 +1477,12 @@ if __name__ == "__main__":
|
|
1507 |
logging.info('Starting the transcription and summarization process.')
|
1508 |
logging.info(f'Input path: {args.input_path}')
|
1509 |
logging.info(f'API Name: {args.api_name}')
|
1510 |
-
logging.debug(f'API Key: {args.api_key}')
|
1511 |
logging.info(f'Number of speakers: {args.num_speakers}')
|
1512 |
logging.info(f'Whisper model: {args.whisper_model}')
|
1513 |
logging.info(f'Offset: {args.offset}')
|
1514 |
logging.info(f'VAD filter: {args.vad_filter}')
|
1515 |
-
logging.info(f'Log Level: {args.log_level}')
|
1516 |
|
1517 |
if args.api_name and args.api_key:
|
1518 |
logging.info(f'API: {args.api_name}')
|
@@ -1529,13 +1499,13 @@ if __name__ == "__main__":
|
|
1529 |
|
1530 |
# Hey, we're in HuggingFace
|
1531 |
launch_ui(demo_mode=args.demo_mode)
|
1532 |
-
|
1533 |
try:
|
1534 |
-
results = main(input_path, api_name=api_name, api_key=api_key,
|
1535 |
-
|
|
|
1536 |
logging.info('Transcription process completed.')
|
1537 |
except Exception as e:
|
1538 |
logging.error('An error occurred during the transcription process.')
|
1539 |
logging.error(str(e))
|
1540 |
sys.exit(1)
|
1541 |
-
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import configparser
|
4 |
+
import json
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import platform
|
8 |
+
import requests
|
9 |
+
import shutil
|
10 |
+
import subprocess
|
11 |
+
import sys
|
12 |
+
import time
|
13 |
+
import unicodedata
|
14 |
import zipfile
|
15 |
+
|
16 |
+
import gradio as gr
|
|
|
17 |
import torch
|
18 |
import yt_dlp
|
19 |
|
|
|
20 |
#######
|
21 |
# Function Sections
|
22 |
#
|
|
|
42 |
#
|
43 |
|
44 |
|
|
|
45 |
####
|
46 |
#
|
47 |
# TL/DW: Too Long Didn't Watch
|
|
|
59 |
# Download Audio+Video from URL -> Transcribe audio from Video:**
|
60 |
# python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s`
|
61 |
#
|
62 |
+
# Download Audio only from URL -> Transcribe audio -> Summarize using (`anthropic`/`cohere`/`openai`/`llama` (
|
63 |
+
# llama.cpp)/`ooba` (oobabooga/text-gen-webui)/`kobold` (kobold.cpp)/`tabby` (Tabbyapi)) API:** python summarize.py
|
64 |
+
# -v https://www.youtube.com/watch?v=4nd1CDZP21s -api <your choice of API>` - Make sure to put your API key into
|
65 |
+
# `config.txt` under the appropriate API variable
|
66 |
#
|
67 |
# Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:**
|
68 |
# python summarize.py ./local/file_on_your/system --api_name <API_name>`
|
|
|
98 |
huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None)
|
99 |
logging.debug(f"Loaded HuggingFace Face API Key: {huggingface_api_key}")
|
100 |
|
|
|
101 |
# Models
|
102 |
anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229')
|
103 |
cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus')
|
|
|
127 |
#######################
|
128 |
|
129 |
# Dirty hack - sue me.
|
130 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
131 |
|
132 |
+
whisper_models = ["small", "medium", "small.en", "medium.en"]
|
133 |
source_languages = {
|
134 |
"en": "English",
|
135 |
"zh": "Chinese",
|
|
|
141 |
}
|
142 |
source_language_list = [key[0] for key in source_languages.items()]
|
143 |
|
144 |
+
print(r"""
|
145 |
+
_____ _ ________ _ _
|
|
|
|
|
146 |
|_ _|| | / /| _ \| | | | _
|
147 |
| | | | / / | | | || | | |(_)
|
148 |
| | | | / / | | | || |/\| |
|
|
|
173 |
|
174 |
# Perform Platform Check
|
175 |
userOS = ""
|
176 |
+
|
177 |
+
|
178 |
def platform_check():
|
179 |
global userOS
|
180 |
if platform.system() == "Linux":
|
|
|
188 |
exit()
|
189 |
|
190 |
|
|
|
191 |
# Check for NVIDIA GPU and CUDA availability
|
192 |
def cuda_check():
|
193 |
global processing_choice
|
|
|
204 |
processing_choice = "cpu" # Set processing_choice to cpu if nvidia-smi command fails
|
205 |
|
206 |
|
|
|
207 |
# Ask user if they would like to use either their GPU or their CPU for transcription
|
208 |
def decide_cpugpu():
|
209 |
global processing_choice
|
|
|
220 |
print("Invalid choice. Please select either GPU or CPU.")
|
221 |
|
222 |
|
|
|
223 |
# check for existence of ffmpeg
|
224 |
def check_ffmpeg():
|
225 |
if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")):
|
|
|
227 |
pass
|
228 |
else:
|
229 |
logging.debug("ffmpeg not installed on the local system/in local PATH")
|
230 |
+
print(
|
231 |
+
"ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/")
|
232 |
if userOS == "Windows":
|
233 |
download_ffmpeg()
|
234 |
elif userOS == "Linux":
|
235 |
+
print(
|
236 |
+
"You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg','dnf install ffmpeg' or 'pacman', etc.")
|
237 |
else:
|
238 |
logging.debug("running an unsupported OS")
|
239 |
+
print("You're running an unsupported/Un-tested OS")
|
240 |
exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)")
|
241 |
if exit_script == "y" or "yes" or "1":
|
242 |
exit()
|
243 |
|
244 |
|
|
|
245 |
# Download ffmpeg
|
246 |
def download_ffmpeg():
|
247 |
user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ")
|
|
|
249 |
print("Downloading ffmpeg")
|
250 |
url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip"
|
251 |
response = requests.get(url)
|
252 |
+
|
253 |
if response.status_code == 200:
|
254 |
print("Saving ffmpeg zip file")
|
255 |
logging.debug("Saving ffmpeg zip file")
|
256 |
zip_path = "ffmpeg-release-essentials.zip"
|
257 |
with open(zip_path, 'wb') as file:
|
258 |
file.write(response.content)
|
259 |
+
|
260 |
logging.debug("Extracting the 'ffmpeg.exe' file from the zip")
|
261 |
print("Extracting ffmpeg.exe from zip file to '/Bin' folder")
|
262 |
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
263 |
ffmpeg_path = "ffmpeg-7.0-essentials_build/bin/ffmpeg.exe"
|
264 |
+
|
265 |
logging.debug("checking if the './Bin' folder exists, creating if not")
|
266 |
bin_folder = "Bin"
|
267 |
if not os.path.exists(bin_folder):
|
268 |
logging.debug("Creating a folder for './Bin', it didn't previously exist")
|
269 |
os.makedirs(bin_folder)
|
270 |
+
|
271 |
logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder")
|
272 |
zip_ref.extract(ffmpeg_path, path=bin_folder)
|
273 |
+
|
274 |
logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder")
|
275 |
src_path = os.path.join(bin_folder, ffmpeg_path)
|
276 |
dst_path = os.path.join(bin_folder, "ffmpeg.exe")
|
277 |
shutil.move(src_path, dst_path)
|
278 |
+
|
279 |
logging.debug("Removing ffmpeg zip file")
|
280 |
print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)")
|
281 |
os.remove(zip_path)
|
|
|
289 |
logging.debug("User chose to not download ffmpeg")
|
290 |
print("ffmpeg will not be downloaded.")
|
291 |
|
292 |
+
|
293 |
+
#
|
294 |
#
|
295 |
####################################################################################################################################
|
296 |
|
297 |
|
|
|
|
|
|
|
|
|
|
|
298 |
####################################################################################################################################
|
299 |
# Processing Paths and local file handling
|
300 |
#
|
|
|
306 |
with open(file_path, 'r') as file:
|
307 |
for line in file:
|
308 |
line = line.strip()
|
309 |
+
if line and not os.path.exists(
|
310 |
+
os.path.join('results', normalize_title(line.split('/')[-1].split('.')[0]) + '.json')):
|
311 |
logging.debug("line successfully imported from file and added to list to be transcribed")
|
312 |
paths.append(line)
|
313 |
return paths
|
314 |
|
315 |
|
|
|
316 |
def process_path(path):
|
317 |
""" Decides whether the path is a URL or a local file and processes accordingly. """
|
318 |
if path.startswith('http'):
|
|
|
326 |
return None
|
327 |
|
328 |
|
|
|
329 |
# FIXME
|
330 |
def process_local_file(file_path):
|
331 |
logging.info(f"Processing local file: {file_path}")
|
|
|
335 |
download_path = create_download_directory(title)
|
336 |
logging.debug(f"Converting '{title}' to an audio file (wav).")
|
337 |
audio_file = convert_to_wav(file_path) # Assumes input files are videos needing audio extraction
|
338 |
+
logging.debug(f"'{title}' successfully converted to an audio file (wav).")
|
339 |
return download_path, info_dict, audio_file
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
|
342 |
+
#
|
343 |
+
#
|
344 |
+
####################################################################################################################################
|
345 |
|
346 |
|
347 |
####################################################################################################################################
|
348 |
# Video Download/Handling
|
349 |
#
|
350 |
|
351 |
+
def process_url(input_path, num_speakers=2, whisper_model="small.en", custom_prompt=None, offset=0, api_name=None,
|
352 |
+
api_key=None, vad_filter=False, download_video_flag=False, demo_mode=False):
|
353 |
if demo_mode:
|
354 |
api_name = "huggingface"
|
355 |
api_key = os.environ.get(HF_TOKEN)
|
356 |
print("HUGGINGFACE API KEY CHECK #3: " + api_key)
|
357 |
vad_filter = False
|
358 |
download_video_flag = False
|
359 |
+
|
360 |
try:
|
361 |
+
results = main(input_path, api_name=api_name, api_key=api_key, num_speakers=num_speakers,
|
362 |
+
whisper_model=whisper_model, offset=offset, vad_filter=vad_filter,
|
363 |
+
download_video_flag=download_video_flag)
|
364 |
|
365 |
if results:
|
366 |
transcription_result = results[0]
|
|
|
384 |
return None, error_message, None, None
|
385 |
|
386 |
|
|
|
387 |
def create_download_directory(title):
|
388 |
base_dir = "Results"
|
389 |
# Remove characters that are illegal in Windows filenames and normalize
|
|
|
398 |
return session_path
|
399 |
|
400 |
|
|
|
401 |
def normalize_title(title):
|
402 |
# Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters
|
403 |
title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii')
|
404 |
+
title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?',
|
405 |
+
'').replace(
|
406 |
+
'<', '').replace('>', '').replace('|', '')
|
407 |
return title
|
408 |
|
409 |
|
|
|
410 |
def get_youtube(video_url):
|
411 |
ydl_opts = {
|
412 |
'format': 'bestaudio[ext=m4a]',
|
|
|
421 |
return info_dict
|
422 |
|
423 |
|
|
|
424 |
def get_playlist_videos(playlist_url):
|
425 |
ydl_opts = {
|
426 |
'extract_flat': True,
|
|
|
440 |
return [], None
|
441 |
|
442 |
|
|
|
443 |
def save_to_file(video_urls, filename):
|
444 |
with open(filename, 'w') as file:
|
445 |
file.write('\n'.join(video_urls))
|
446 |
print(f"Video URLs saved to {filename}")
|
447 |
|
448 |
|
|
|
449 |
def download_video(video_url, download_path, info_dict, download_video_flag):
|
450 |
logging.debug("About to normalize downloaded video title")
|
451 |
title = normalize_title(info_dict['title'])
|
452 |
+
|
453 |
if download_video_flag == False:
|
454 |
file_path = os.path.join(download_path, f"{title}.m4a")
|
455 |
ydl_opts = {
|
|
|
472 |
'format': 'bestaudio[ext=m4a]',
|
473 |
'outtmpl': audio_file_path,
|
474 |
}
|
475 |
+
|
476 |
with yt_dlp.YoutubeDL(ydl_opts_video) as ydl:
|
477 |
logging.debug("yt_dlp: About to download video with youtube-dl")
|
478 |
ydl.download([video_url])
|
479 |
logging.debug("yt_dlp: Video successfully downloaded with youtube-dl")
|
480 |
+
|
481 |
with yt_dlp.YoutubeDL(ydl_opts_audio) as ydl:
|
482 |
logging.debug("yt_dlp: About to download audio with youtube-dl")
|
483 |
ydl.download([video_url])
|
|
|
506 |
'-c:a', 'copy',
|
507 |
output_file_path
|
508 |
]
|
509 |
+
subprocess.run(ffmpeg_command, check=True)
|
510 |
else:
|
511 |
logging.error("You shouldn't be here...")
|
512 |
exit()
|
513 |
os.remove(video_file_path)
|
514 |
os.remove(audio_file_path)
|
|
|
|
|
|
|
|
|
515 |
|
516 |
+
return output_file_path
|
517 |
|
518 |
|
519 |
#
|
|
|
521 |
####################################################################################################################################
|
522 |
|
523 |
|
|
|
|
|
|
|
|
|
524 |
####################################################################################################################################
|
525 |
# Audio Transcription
|
526 |
#
|
|
|
544 |
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
|
545 |
|
546 |
command = [
|
547 |
+
ffmpeg_cmd, # Assuming the working directory is correctly set where .\Bin exists
|
548 |
+
"-ss", "00:00:00", # Start at the beginning of the video
|
549 |
"-i", video_file_path,
|
550 |
+
"-ar", "16000", # Audio sample rate
|
551 |
+
"-ac", "1", # Number of audio channels
|
552 |
+
"-c:a", "pcm_s16le", # Audio codec
|
553 |
out_path
|
554 |
]
|
555 |
try:
|
|
|
581 |
return out_path
|
582 |
|
583 |
|
|
|
584 |
# Transcribe .wav into .segments.json
|
585 |
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False):
|
586 |
logging.info('Loading faster_whisper model: %s', whisper_model)
|
|
|
599 |
with open(out_file) as f:
|
600 |
segments = json.load(f)
|
601 |
return segments
|
602 |
+
|
603 |
logging.info('Starting transcription...')
|
604 |
options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter)
|
605 |
transcribe_options = dict(task="transcribe", **options)
|
|
|
621 |
logging.error("Error transcribing audio: %s", str(e))
|
622 |
raise RuntimeError("Error transcribing audio")
|
623 |
return segments
|
624 |
+
|
625 |
+
|
626 |
#
|
627 |
#
|
628 |
####################################################################################################################################
|
629 |
|
630 |
|
|
|
|
|
|
|
|
|
631 |
####################################################################################################################################
|
632 |
# Diarization
|
633 |
#
|
634 |
# TODO: https://huggingface.co/pyannote/speaker-diarization-3.1
|
635 |
# embedding_model = "pyannote/embedding", embedding_size=512
|
636 |
# embedding_model = "speechbrain/spkrec-ecapa-voxceleb", embedding_size=192
|
637 |
+
# def speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0):
|
638 |
+
# """
|
639 |
+
# 1. Generating speaker embeddings for each segments.
|
640 |
+
# 2. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
|
641 |
+
# """
|
642 |
+
# try:
|
643 |
+
# from pyannote.audio import Audio
|
644 |
+
# from pyannote.core import Segment
|
645 |
+
# from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
646 |
+
# import numpy as np
|
647 |
+
# import pandas as pd
|
648 |
+
# from sklearn.cluster import AgglomerativeClustering
|
649 |
+
# from sklearn.metrics import silhouette_score
|
650 |
+
# import tqdm
|
651 |
+
# import wave
|
652 |
+
#
|
653 |
+
# embedding_model = PretrainedSpeakerEmbedding( embedding_model, device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
654 |
+
#
|
655 |
+
#
|
656 |
+
# _,file_ending = os.path.splitext(f'{video_file_path}')
|
657 |
+
# audio_file = video_file_path.replace(file_ending, ".wav")
|
658 |
+
# out_file = video_file_path.replace(file_ending, ".diarize.json")
|
659 |
+
#
|
660 |
+
# logging.debug("getting duration of audio file")
|
661 |
+
# with contextlib.closing(wave.open(audio_file,'r')) as f:
|
662 |
+
# frames = f.getnframes()
|
663 |
+
# rate = f.getframerate()
|
664 |
+
# duration = frames / float(rate)
|
665 |
+
# logging.debug("duration of audio file obtained")
|
666 |
+
# print(f"duration of audio file: {duration}")
|
667 |
+
#
|
668 |
+
# def segment_embedding(segment):
|
669 |
+
# logging.debug("Creating embedding")
|
670 |
+
# audio = Audio()
|
671 |
+
# start = segment["start"]
|
672 |
+
# end = segment["end"]
|
673 |
+
#
|
674 |
+
# # Enforcing a minimum segment length
|
675 |
+
# if end-start < 0.3:
|
676 |
+
# padding = 0.3-(end-start)
|
677 |
+
# start -= padding/2
|
678 |
+
# end += padding/2
|
679 |
+
# print('Padded segment because it was too short:',segment)
|
680 |
+
#
|
681 |
+
# # Whisper overshoots the end timestamp in the last segment
|
682 |
+
# end = min(duration, end)
|
683 |
+
# # clip audio and embed
|
684 |
+
# clip = Segment(start, end)
|
685 |
+
# waveform, sample_rate = audio.crop(audio_file, clip)
|
686 |
+
# return embedding_model(waveform[None])
|
687 |
+
#
|
688 |
+
# embeddings = np.zeros(shape=(len(segments), embedding_size))
|
689 |
+
# for i, segment in enumerate(tqdm.tqdm(segments)):
|
690 |
+
# embeddings[i] = segment_embedding(segment)
|
691 |
+
# embeddings = np.nan_to_num(embeddings)
|
692 |
+
# print(f'Embedding shape: {embeddings.shape}')
|
693 |
+
#
|
694 |
+
# if num_speakers == 0:
|
695 |
+
# # Find the best number of speakers
|
696 |
+
# score_num_speakers = {}
|
697 |
+
#
|
698 |
+
# for num_speakers in range(2, 10+1):
|
699 |
+
# clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
|
700 |
+
# score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
|
701 |
+
# score_num_speakers[num_speakers] = score
|
702 |
+
# best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
|
703 |
+
# print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
|
704 |
+
# else:
|
705 |
+
# best_num_speaker = num_speakers
|
706 |
+
#
|
707 |
+
# # Assign speaker label
|
708 |
+
# clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
|
709 |
+
# labels = clustering.labels_
|
710 |
+
# for i in range(len(segments)):
|
711 |
+
# segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
|
712 |
+
#
|
713 |
+
# with open(out_file,'w') as f:
|
714 |
+
# f.write(json.dumps(segments, indent=2))
|
715 |
+
#
|
716 |
+
# # Make CSV output
|
717 |
+
# def convert_time(secs):
|
718 |
+
# return datetime.timedelta(seconds=round(secs))
|
719 |
+
#
|
720 |
+
# objects = {
|
721 |
+
# 'Start' : [],
|
722 |
+
# 'End': [],
|
723 |
+
# 'Speaker': [],
|
724 |
+
# 'Text': []
|
725 |
+
# }
|
726 |
+
# text = ''
|
727 |
+
# for (i, segment) in enumerate(segments):
|
728 |
+
# if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
729 |
+
# objects['Start'].append(str(convert_time(segment["start"])))
|
730 |
+
# objects['Speaker'].append(segment["speaker"])
|
731 |
+
# if i != 0:
|
732 |
+
# objects['End'].append(str(convert_time(segments[i - 1]["end"])))
|
733 |
+
# objects['Text'].append(text)
|
734 |
+
# text = ''
|
735 |
+
# text += segment["text"] + ' '
|
736 |
+
# objects['End'].append(str(convert_time(segments[i - 1]["end"])))
|
737 |
+
# objects['Text'].append(text)
|
738 |
+
#
|
739 |
+
# save_path = video_file_path.replace(file_ending, ".csv")
|
740 |
+
# df_results = pd.DataFrame(objects)
|
741 |
+
# df_results.to_csv(save_path)
|
742 |
+
# return df_results, save_path
|
743 |
+
#
|
744 |
+
# except Exception as e:
|
745 |
+
# raise RuntimeError("Error Running inference with local model", e)
|
746 |
#
|
747 |
#
|
748 |
####################################################################################################################################
|
749 |
|
750 |
|
|
|
|
|
|
|
|
|
751 |
####################################################################################################################################
|
752 |
#Summarizers
|
753 |
#
|
|
|
760 |
return text
|
761 |
|
762 |
|
763 |
+
def summarize_with_openai(api_key, file_path, model, custom_prompt):
|
|
|
764 |
try:
|
765 |
logging.debug("openai: Loading json data for summarization")
|
766 |
with open(file_path, 'r') as file:
|
767 |
segments = json.load(file)
|
768 |
+
|
769 |
logging.debug("openai: Extracting text from the segments")
|
770 |
text = extract_text_from_segments(segments)
|
771 |
|
|
|
773 |
'Authorization': f'Bearer {api_key}',
|
774 |
'Content-Type': 'application/json'
|
775 |
}
|
776 |
+
# headers = {
|
777 |
+
# 'Authorization': f'Bearer {api_key}',
|
778 |
+
# 'Content-Type': 'application/json'
|
779 |
+
# }
|
780 |
+
|
781 |
+
logging.debug(f"openai: API Key is: {api_key}")
|
782 |
logging.debug("openai: Preparing data + prompt for submittal")
|
783 |
+
openai_prompt = f"{text} \n\n\n\n{custom_prompt}"
|
784 |
data = {
|
785 |
"model": model,
|
786 |
"messages": [
|
|
|
798 |
}
|
799 |
logging.debug("openai: Posting request")
|
800 |
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
|
801 |
+
|
802 |
if response.status_code == 200:
|
803 |
summary = response.json()['choices'][0]['message']['content'].strip()
|
804 |
logging.debug("openai: Summarization successful")
|
|
|
814 |
return None
|
815 |
|
816 |
|
817 |
+
def summarize_with_claude(api_key, file_path, model, custom_prompt):
|
|
|
818 |
try:
|
819 |
logging.debug("anthropic: Loading JSON data")
|
820 |
with open(file_path, 'r') as file:
|
821 |
segments = json.load(file)
|
822 |
+
|
823 |
logging.debug("anthropic: Extracting text from the segments file")
|
824 |
text = extract_text_from_segments(segments)
|
825 |
|
|
|
828 |
'anthropic-version': '2023-06-01',
|
829 |
'Content-Type': 'application/json'
|
830 |
}
|
831 |
+
|
832 |
+
anthropic_prompt = custom_prompt
|
833 |
+
logging.debug("anthropic: Prompt is {anthropic_prompt}")
|
834 |
user_message = {
|
835 |
"role": "user",
|
836 |
+
"content": f"{text} \n\n\n\n{anthropic_prompt}"
|
837 |
}
|
838 |
|
839 |
data = {
|
840 |
"model": model,
|
841 |
+
"max_tokens": 4096, # max _possible_ tokens to return
|
842 |
"messages": [user_message],
|
843 |
"stop_sequences": ["\n\nHuman:"],
|
844 |
"temperature": 0.7,
|
|
|
850 |
"stream": False,
|
851 |
"system": "You are a professional summarizer."
|
852 |
}
|
853 |
+
|
854 |
logging.debug("anthropic: Posting request to API")
|
855 |
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
|
856 |
+
|
857 |
# Check if the status code indicates success
|
858 |
if response.status_code == 200:
|
859 |
logging.debug("anthropic: Post submittal successful")
|
860 |
response_data = response.json()
|
861 |
try:
|
862 |
summary = response_data['content'][0]['text'].strip()
|
863 |
+
logging.debug("anthropic: Summarization successful")
|
864 |
print("Summary processed successfully.")
|
865 |
return summary
|
866 |
except (IndexError, KeyError) as e:
|
|
|
882 |
return None
|
883 |
|
884 |
|
|
|
885 |
# Summarize with Cohere
|
886 |
+
def summarize_with_cohere(api_key, file_path, model, custom_prompt):
|
887 |
try:
|
888 |
logging.basicConfig(level=logging.DEBUG)
|
889 |
logging.debug("cohere: Loading JSON data")
|
|
|
899 |
'Authorization': f'Bearer {api_key}'
|
900 |
}
|
901 |
|
902 |
+
cohere_prompt = f"{text} \n\n\n\n{custom_prompt}"
|
903 |
+
logging.debug("cohere: Prompt being sent is {cohere_prompt}")
|
904 |
+
|
905 |
data = {
|
906 |
"chat_history": [
|
907 |
{"role": "USER", "message": cohere_prompt}
|
|
|
927 |
logging.error("Expected data not found in API response.")
|
928 |
return "Expected data not found in API response."
|
929 |
else:
|
930 |
+
logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}")
|
931 |
print(f"Failed to process summary, status code {response.status_code}: {response.text}")
|
932 |
return f"cohere: API request failed: {response.text}"
|
933 |
|
|
|
936 |
return f"cohere: Error occurred while processing summary with Cohere: {str(e)}"
|
937 |
|
938 |
|
|
|
939 |
# https://console.groq.com/docs/quickstart
|
940 |
+
def summarize_with_groq(api_key, file_path, model, custom_prompt):
|
941 |
try:
|
942 |
logging.debug("groq: Loading JSON data")
|
943 |
with open(file_path, 'r') as file:
|
|
|
951 |
'Content-Type': 'application/json'
|
952 |
}
|
953 |
|
954 |
+
groq_prompt = f"{text} \n\n\n\n{custom_prompt}"
|
955 |
+
logging.debug("groq: Prompt being sent is {groq_prompt}")
|
956 |
+
|
957 |
data = {
|
958 |
"messages": [
|
959 |
{
|
|
|
993 |
#
|
994 |
# Local Summarization
|
995 |
|
996 |
+
def summarize_with_llama(api_url, file_path, token, custom_prompt):
|
997 |
try:
|
998 |
logging.debug("llama: Loading JSON data")
|
999 |
with open(file_path, 'r') as file:
|
|
|
1006 |
'accept': 'application/json',
|
1007 |
'content-type': 'application/json',
|
1008 |
}
|
1009 |
+
if len(token) > 5:
|
1010 |
headers['Authorization'] = f'Bearer {token}'
|
1011 |
|
1012 |
+
llama_prompt = f"{text} \n\n\n\n{custom_prompt}"
|
1013 |
+
logging.debug("llama: Prompt being sent is {llama_prompt}")
|
1014 |
|
|
|
|
|
1015 |
data = {
|
1016 |
"prompt": llama_prompt
|
1017 |
}
|
1018 |
|
1019 |
+
logging.debug("llama: Submitting request to API endpoint")
|
1020 |
print("llama: Submitting request to API endpoint")
|
1021 |
response = requests.post(api_url, headers=headers, json=data)
|
1022 |
response_data = response.json()
|
|
|
1038 |
return f"llama: Error occurred while processing summary with llama: {str(e)}"
|
1039 |
|
1040 |
|
|
|
1041 |
# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate
|
1042 |
+
def summarize_with_kobold(api_url, file_path, custom_prompt):
|
1043 |
try:
|
1044 |
logging.debug("kobold: Loading JSON data")
|
1045 |
with open(file_path, 'r') as file:
|
|
|
1052 |
'accept': 'application/json',
|
1053 |
'content-type': 'application/json',
|
1054 |
}
|
1055 |
+
|
1056 |
+
kobold_prompt = f"{text} \n\n\n\n{custom_prompt}"
|
1057 |
+
logging.debug("kobold: Prompt being sent is {kobold_prompt}")
|
1058 |
+
|
1059 |
# FIXME
|
|
|
|
|
1060 |
# Values literally c/p from the api docs....
|
1061 |
data = {
|
1062 |
"max_context_length": 8096,
|
|
|
1088 |
return f"kobold: Error occurred while processing summary with kobold: {str(e)}"
|
1089 |
|
1090 |
|
|
|
1091 |
# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API
|
1092 |
+
def summarize_with_oobabooga(api_url, file_path, custom_prompt):
|
1093 |
try:
|
1094 |
logging.debug("ooba: Loading JSON data")
|
1095 |
with open(file_path, 'r') as file:
|
|
|
1104 |
'content-type': 'application/json',
|
1105 |
}
|
1106 |
|
1107 |
+
# prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are my favorite."
|
1108 |
+
# prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable
|
1109 |
+
ooba_prompt = "{text}\n\n\n\n{custom_prompt}"
|
1110 |
+
logging.debug("ooba: Prompt being sent is {ooba_prompt}")
|
1111 |
|
1112 |
+
data = {
|
1113 |
"mode": "chat",
|
1114 |
"character": "Example",
|
1115 |
+
"messages": [{"role": "user", "content": ooba_prompt}]
|
1116 |
}
|
1117 |
|
1118 |
logging.debug("ooba: Submitting request to API endpoint")
|
|
|
1135 |
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"
|
1136 |
|
1137 |
|
|
|
1138 |
def save_summary_to_file(summary, file_path):
|
1139 |
summary_file_path = file_path.replace('.segments.json', '_summary.txt')
|
1140 |
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
|
|
|
1142 |
file.write(summary)
|
1143 |
logging.info(f"Summary saved to file: {summary_file_path}")
|
1144 |
|
1145 |
+
|
1146 |
#
|
1147 |
#
|
1148 |
####################################################################################################################################
|
1149 |
|
1150 |
|
|
|
|
|
|
|
|
|
1151 |
####################################################################################################################################
|
1152 |
# Gradio UI
|
1153 |
#
|
|
|
1181 |
response_data = response.json()
|
1182 |
wait_time = response_data.get('estimated_time', 10)
|
1183 |
return None, f"Model is loading, retrying in {int(wait_time)} seconds..."
|
1184 |
+
# Sleep before retrying....
|
1185 |
+
time.sleep(wait_time)
|
1186 |
|
1187 |
if api_key == "":
|
1188 |
api_key = os.environ.get(HF_TOKEN)
|
|
|
1191 |
logging.debug("huggingface: Loading json data for summarization")
|
1192 |
with open(file_path, 'r') as file:
|
1193 |
segments = json.load(file)
|
1194 |
+
|
1195 |
logging.debug("huggingface: Extracting text from the segments")
|
1196 |
text = ' '.join([segment['text'] for segment in segments])
|
1197 |
|
1198 |
api_key = os.environ.get(HF_TOKEN)
|
1199 |
logging.debug("HUGGINGFACE API KEY CHECK #2: " + api_key)
|
1200 |
|
|
|
|
|
|
|
1201 |
logging.debug("huggingface: Submitting request...")
|
1202 |
response = requests.post(API_URL, headers=headers, json=data)
|
1203 |
+
|
1204 |
if response.status_code == 200:
|
1205 |
summary = response.json()[0]['summary_text']
|
1206 |
logging.debug("huggingface: Summarization successful")
|
|
|
1214 |
print(f"Error occurred while processing summary with huggingface: {str(e)}")
|
1215 |
return None
|
1216 |
|
|
|
|
|
1217 |
def same_auth(username, password):
|
1218 |
return username == password
|
1219 |
|
1220 |
|
|
|
1221 |
def format_transcription(transcription_result):
|
1222 |
if transcription_result:
|
1223 |
json_data = transcription_result['transcription']
|
|
|
1226 |
return ""
|
1227 |
|
1228 |
|
1229 |
+
def process_text(api_key, text_file):
|
1230 |
+
summary, message = summarize_with_huggingface(api_key, text_file)
|
|
|
1231 |
if summary:
|
1232 |
# Show summary on success
|
1233 |
+
return "Summary:", summary
|
1234 |
else:
|
1235 |
# Inform user about load/wait time
|
1236 |
+
return "Notice:", message
|
1237 |
|
1238 |
|
1239 |
def launch_ui(demo_mode=False):
|
1240 |
+
def process_url(url, num_speakers, whisper_model, custom_prompt, offset, api_name, api_key, vad_filter,
|
1241 |
+
download_video):
|
1242 |
+
try:
|
1243 |
+
# Assuming 'main' is the function that handles the processing logic.
|
1244 |
+
# Adjust parameters as needed based on your actual 'main' function implementation.
|
1245 |
+
results = main(url, api_name=api_name, api_key=api_key, num_speakers=num_speakers,
|
1246 |
+
whisper_model=whisper_model, offset=offset, vad_filter=vad_filter,
|
1247 |
+
download_video_flag=download_video, custom_prompt=custom_prompt)
|
1248 |
+
|
1249 |
+
if results:
|
1250 |
+
transcription_result = results[0]
|
1251 |
+
json_data = transcription_result['transcription']
|
1252 |
+
summary_file_path = transcription_result.get('summary', "Summary not available.")
|
1253 |
+
json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json')
|
1254 |
+
video_file_path = transcription_result.get('video_path', None)
|
1255 |
+
return json_data, summary_file_path, json_file_path, summary_file_path, video_file_path
|
1256 |
+
else:
|
1257 |
+
return "No results found.", "No summary available.", None, None, None
|
1258 |
+
except Exception as e:
|
1259 |
+
return str(e), "Error processing the request.", None, None, None
|
1260 |
|
1261 |
inputs = [
|
1262 |
+
gr.components.Textbox(label="URL", placeholder="Enter the video URL here"),
|
1263 |
+
gr.components.Number(value=2, label="Number of Speakers"),
|
1264 |
+
gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model"),
|
1265 |
+
gr.components.Textbox(label="Custom Prompt", placeholder="Enter a custom prompt here", lines=3),
|
1266 |
+
gr.components.Number(value=0, label="Offset"),
|
1267 |
+
gr.components.Dropdown(
|
1268 |
+
choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"],
|
1269 |
+
label="API Name"),
|
1270 |
+
gr.components.Textbox(label="API Key", placeholder="Enter your API key here"),
|
1271 |
+
gr.components.Checkbox(label="VAD Filter", value=False),
|
1272 |
+
gr.components.Checkbox(label="Download Video", value=False)
|
1273 |
]
|
1274 |
|
1275 |
+
outputs = [
|
1276 |
+
gr.components.Textbox(label="Transcription"),
|
1277 |
+
gr.components.Textbox(label="Summary or Status Message"),
|
1278 |
+
gr.components.File(label="Download Transcription as JSON", visible=lambda x: x is not None),
|
1279 |
+
gr.components.File(label="Download Summary as Text", visible=lambda x: x is not None),
|
1280 |
+
gr.components.File(label="Download Video", visible=lambda x: x is not None)
|
1281 |
+
]
|
1282 |
|
1283 |
iface = gr.Interface(
|
1284 |
+
fn=process_url,
|
|
|
|
|
|
|
1285 |
inputs=inputs,
|
1286 |
+
outputs=outputs,
|
|
|
|
|
|
|
|
|
|
|
1287 |
title="Video Transcription and Summarization",
|
1288 |
+
description="Submit a video URL for transcription and summarization. Ensure you input all necessary information including API keys.",
|
1289 |
+
theme="bethecloud/storj_theme" # Adjust theme as necessary
|
|
|
|
|
|
|
|
|
1290 |
)
|
1291 |
|
1292 |
+
iface.launch(share=False)
|
1293 |
+
|
1294 |
|
1295 |
#
|
1296 |
#
|
1297 |
#####################################################################################################################################
|
1298 |
|
1299 |
|
|
|
|
|
|
|
|
|
|
|
1300 |
####################################################################################################################################
|
1301 |
# Main()
|
1302 |
#
|
1303 |
|
1304 |
+
def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False,
|
1305 |
+
download_video_flag=False, demo_mode=False, custom_prompt=None):
|
1306 |
if input_path is None and args.user_interface:
|
1307 |
return []
|
1308 |
start_time = time.monotonic()
|
|
|
1315 |
paths = [input_path]
|
1316 |
elif (info_dict := get_youtube(input_path)) and 'entries' in info_dict:
|
1317 |
logging.debug("MAIN: YouTube playlist detected")
|
1318 |
+
print(
|
1319 |
+
"\n\nSorry, but playlists aren't currently supported. You can run the following command to generate a text file that you can then pass into this script though! (It may not work... playlist support seems spotty)" + """\n\n\tpython Get_Playlist_URLs.py <Youtube Playlist URL>\n\n\tThen,\n\n\tpython diarizer.py <playlist text file name>\n\n""")
|
1320 |
return
|
1321 |
else:
|
1322 |
paths = [input_path]
|
|
|
1336 |
logging.debug("MAIN: Video downloaded successfully")
|
1337 |
logging.debug("MAIN: Converting video file to WAV...")
|
1338 |
audio_file = convert_to_wav(video_path, offset)
|
1339 |
+
logging.debug("MAIN: Audio file converted successfully")
|
1340 |
else:
|
1341 |
if os.path.exists(path):
|
1342 |
logging.debug("MAIN: Local file path detected")
|
|
|
1356 |
results.append(transcription_result)
|
1357 |
logging.info(f"Transcription complete: {audio_file}")
|
1358 |
|
|
|
|
|
|
|
|
|
|
|
1359 |
# Perform summarization based on the specified API
|
1360 |
if api_name and api_key:
|
1361 |
logging.debug(f"MAIN: Summarization being performed by {api_name}")
|
1362 |
json_file_path = audio_file.replace('.wav', '.segments.json')
|
1363 |
if api_name.lower() == 'openai':
|
1364 |
+
api_key = openai_api_key
|
1365 |
try:
|
1366 |
+
logging.debug(f"MAIN: trying to summarize with openAI")
|
1367 |
+
summary = summarize_with_openai(api_key, json_file_path, openai_model, custom_prompt)
|
|
|
|
|
1368 |
except requests.exceptions.ConnectionError:
|
1369 |
+
requests.status_code = "Connection: "
|
1370 |
+
elif api_name.lower() == "anthropic":
|
1371 |
+
api_key = anthropic_api_key
|
1372 |
try:
|
1373 |
+
logging.debug(f"MAIN: Trying to summarize with anthropic")
|
1374 |
+
summary = summarize_with_claude(api_key, json_file_path, anthropic_model, custom_prompt)
|
|
|
|
|
1375 |
except requests.exceptions.ConnectionError:
|
1376 |
+
requests.status_code = "Connection: "
|
1377 |
+
elif api_name.lower() == "cohere":
|
1378 |
+
api_key = cohere_api_key
|
1379 |
try:
|
1380 |
+
logging.debug(f"MAIN: Trying to summarize with cohere")
|
1381 |
+
summary = summarize_with_cohere(api_key, json_file_path, cohere_model, custom_prompt)
|
|
|
|
|
1382 |
except requests.exceptions.ConnectionError:
|
1383 |
+
requests.status_code = "Connection: "
|
1384 |
+
elif api_name.lower() == "groq":
|
1385 |
+
api_key = groq_api_key
|
1386 |
try:
|
1387 |
+
logging.debug(f"MAIN: Trying to summarize with Groq")
|
1388 |
+
summary = summarize_with_groq(api_key, json_file_path, groq_model, custom_prompt)
|
|
|
|
|
1389 |
except requests.exceptions.ConnectionError:
|
1390 |
+
requests.status_code = "Connection: "
|
1391 |
+
elif api_name.lower() == "llama":
|
1392 |
+
token = llama_api_key
|
1393 |
+
llama_ip = llama_api_IP
|
1394 |
try:
|
1395 |
+
logging.debug(f"MAIN: Trying to summarize with Llama.cpp")
|
1396 |
+
summary = summarize_with_llama(llama_ip, json_file_path, token, custom_prompt)
|
|
|
|
|
|
|
|
|
1397 |
except requests.exceptions.ConnectionError:
|
1398 |
+
requests.status_code = "Connection: "
|
1399 |
+
elif api_name.lower() == "kobold":
|
1400 |
+
token = kobold_api_key
|
1401 |
+
kobold_ip = kobold_api_IP
|
1402 |
try:
|
1403 |
+
logging.debug(f"MAIN: Trying to summarize with kobold.cpp")
|
1404 |
+
summary = summarize_with_kobold(kobold_ip, json_file_path, custom_prompt)
|
|
|
|
|
|
|
|
|
1405 |
except requests.exceptions.ConnectionError:
|
1406 |
+
requests.status_code = "Connection: "
|
1407 |
+
elif api_name.lower() == "ooba":
|
1408 |
+
token = ooba_api_key
|
1409 |
+
ooba_ip = ooba_api_IP
|
1410 |
try:
|
1411 |
+
logging.debug(f"MAIN: Trying to summarize with oobabooga")
|
1412 |
+
summary = summarize_with_oobabooga(ooba_ip, json_file_path, custom_prompt)
|
|
|
|
|
|
|
|
|
1413 |
except requests.exceptions.ConnectionError:
|
1414 |
+
requests.status_code = "Connection: "
|
1415 |
+
elif api_name.lower() == "huggingface":
|
1416 |
+
api_key = huggingface_api_key
|
1417 |
try:
|
1418 |
+
logging.debug(f"MAIN: Trying to summarize with huggingface")
|
1419 |
+
summarize_with_huggingface(api_key, json_file_path, custom_prompt)
|
|
|
|
|
1420 |
except requests.exceptions.ConnectionError:
|
1421 |
+
requests.status_code = "Connection: "
|
1422 |
|
1423 |
else:
|
1424 |
logging.warning(f"Unsupported API: {api_name}")
|
|
|
1441 |
return results
|
1442 |
|
1443 |
|
|
|
1444 |
if __name__ == "__main__":
|
1445 |
parser = argparse.ArgumentParser(description='Transcribe and summarize videos.')
|
1446 |
parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?')
|
1447 |
+
parser.add_argument('-v', '--video', action='store_true', help='Download the video instead of just the audio')
|
1448 |
parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)')
|
1449 |
parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)')
|
1450 |
+
parser.add_argument('-wm', '--whisper_model', type=str, default='small.en',
|
1451 |
+
help='Whisper model (default: small.en)')
|
1452 |
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
|
1453 |
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
|
1454 |
+
parser.add_argument('-log', '--log_level', type=str, default='INFO',
|
1455 |
+
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)')
|
1456 |
parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface')
|
1457 |
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
|
1458 |
#parser.add_argument('--log_file', action=str, help='Where to save logfile (non-default)')
|
1459 |
args = parser.parse_args()
|
1460 |
+
|
1461 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
1462 |
# True
|
1463 |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
1464 |
# Tesla T4
|
1465 |
|
|
|
1466 |
# Since this is running in HF....
|
1467 |
args.user_interface = True
|
1468 |
if args.user_interface:
|
|
|
1477 |
logging.info('Starting the transcription and summarization process.')
|
1478 |
logging.info(f'Input path: {args.input_path}')
|
1479 |
logging.info(f'API Name: {args.api_name}')
|
1480 |
+
logging.debug(f'API Key: {args.api_key}') # ehhhhh
|
1481 |
logging.info(f'Number of speakers: {args.num_speakers}')
|
1482 |
logging.info(f'Whisper model: {args.whisper_model}')
|
1483 |
logging.info(f'Offset: {args.offset}')
|
1484 |
logging.info(f'VAD filter: {args.vad_filter}')
|
1485 |
+
logging.info(f'Log Level: {args.log_level}') #lol
|
1486 |
|
1487 |
if args.api_name and args.api_key:
|
1488 |
logging.info(f'API: {args.api_name}')
|
|
|
1499 |
|
1500 |
# Hey, we're in HuggingFace
|
1501 |
launch_ui(demo_mode=args.demo_mode)
|
1502 |
+
|
1503 |
try:
|
1504 |
+
results = main(args.input_path, api_name=args.api_name, api_key=args.api_key,
|
1505 |
+
num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset,
|
1506 |
+
vad_filter=args.vad_filter, download_video_flag=args.video)
|
1507 |
logging.info('Transcription process completed.')
|
1508 |
except Exception as e:
|
1509 |
logging.error('An error occurred during the transcription process.')
|
1510 |
logging.error(str(e))
|
1511 |
sys.exit(1)
|
|