File size: 158,468 Bytes
7b9da4a
805099a
e2366f7
 
805099a
e2366f7
805099a
 
 
 
e2366f7
805099a
e2366f7
 
805099a
 
 
e2366f7
 
7b9da4a
e2366f7
 
 
 
805099a
e2366f7
805099a
a01c107
e2366f7
 
 
 
 
 
 
7b9da4a
e2366f7
 
 
 
 
 
7b9da4a
83730d1
35c0681
0c961d6
e2366f7
7b9da4a
 
 
e2366f7
 
7b9da4a
e2366f7
7b9da4a
 
 
 
e2366f7
 
7b9da4a
e2366f7
7b9da4a
 
 
 
 
 
616dd44
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
d6b96dc
 
7b9da4a
d6b96dc
 
7b9da4a
e2366f7
 
0c961d6
d6b96dc
 
0c961d6
e2366f7
 
 
7b9da4a
 
 
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
 
 
 
 
 
 
 
 
 
 
b927143
 
7b9da4a
b927143
 
7b9da4a
b927143
 
7b9da4a
b927143
 
7b9da4a
b927143
 
7b9da4a
 
 
e2366f7
7b9da4a
b927143
7b9da4a
 
 
 
 
 
 
 
e2366f7
 
 
 
 
 
 
 
7b9da4a
 
 
 
 
 
 
 
0c961d6
7b9da4a
 
 
 
 
 
805099a
7b9da4a
805099a
7b9da4a
 
 
 
 
 
 
 
 
 
 
e2366f7
7b9da4a
 
 
 
 
0c961d6
 
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2366f7
e3cd24c
7b9da4a
0c961d6
 
7b9da4a
 
 
805099a
 
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8eaa51
7b9da4a
 
 
 
805099a
e3cd24c
 
7b9da4a
 
 
805099a
e3cd24c
 
7b9da4a
 
e2366f7
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
805099a
7b9da4a
 
 
 
 
 
805099a
7b9da4a
 
 
 
805099a
7b9da4a
 
 
 
 
805099a
7b9da4a
 
805099a
7b9da4a
 
 
 
805099a
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
805099a
 
0c961d6
e2366f7
 
 
e3cd24c
e2366f7
 
 
7b9da4a
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
e2366f7
 
 
 
 
 
7b9da4a
0c961d6
7b9da4a
 
 
 
 
 
e2366f7
7b9da4a
 
 
 
 
 
 
e2366f7
 
7b9da4a
 
e2366f7
 
7b9da4a
 
 
 
 
e2366f7
7b9da4a
 
 
 
 
 
 
 
805099a
7b9da4a
 
 
805099a
 
e2366f7
7b9da4a
 
e3cd24c
e2366f7
7b9da4a
 
e2366f7
7b9da4a
e2366f7
 
 
 
 
 
 
 
 
012529d
e2366f7
 
012529d
267a582
e2366f7
 
 
012529d
267a582
e2366f7
 
 
267a582
35c0681
e2366f7
 
 
267a582
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c0681
e2366f7
7b9da4a
e2366f7
 
35c0681
 
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805099a
 
 
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
e2366f7
 
35c0681
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805099a
35c0681
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805099a
7b9da4a
 
 
 
805099a
7b9da4a
 
 
 
 
 
 
e2366f7
7b9da4a
 
c8eaa51
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805099a
7b9da4a
0c961d6
 
7b9da4a
 
 
805099a
7b9da4a
 
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
 
e3cd24c
7b9da4a
 
e2366f7
7b9da4a
 
 
 
 
 
 
e2366f7
0c961d6
e3cd24c
 
 
 
 
 
 
7b9da4a
 
 
 
 
 
 
 
e2366f7
0c961d6
7b9da4a
 
 
 
805099a
 
7b9da4a
805099a
 
 
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2366f7
7b9da4a
 
 
 
e2366f7
 
7b9da4a
 
 
 
e2366f7
7b9da4a
e2366f7
7b9da4a
e2366f7
7b9da4a
 
805099a
e2366f7
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
e2366f7
 
 
 
7b9da4a
e2366f7
 
 
 
 
7b9da4a
e2366f7
 
7b9da4a
805099a
 
7b9da4a
 
e2366f7
7b9da4a
 
e3cd24c
7b9da4a
 
 
 
 
805099a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2366f7
805099a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
 
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
 
e3cd24c
0c961d6
7b9da4a
 
 
e2366f7
7b9da4a
b927143
7b9da4a
b927143
7b9da4a
 
 
e2366f7
7b9da4a
 
 
 
805099a
e2366f7
 
7b9da4a
 
 
 
 
 
 
805099a
 
7b9da4a
e2366f7
7b9da4a
e2366f7
7b9da4a
 
 
 
 
 
 
d6b96dc
7b9da4a
 
e2366f7
 
7b9da4a
 
 
805099a
7b9da4a
e2366f7
 
 
 
 
 
 
 
 
7b9da4a
 
e2366f7
 
7b9da4a
 
e2366f7
 
7b9da4a
 
e2366f7
7b9da4a
 
 
 
805099a
7b9da4a
 
 
 
 
 
 
 
805099a
e2366f7
 
7b9da4a
 
805099a
7b9da4a
 
 
 
805099a
7b9da4a
 
e2366f7
7b9da4a
 
 
 
 
 
 
 
805099a
e2366f7
7b9da4a
e2366f7
 
7b9da4a
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
e2366f7
 
7b9da4a
 
 
e2366f7
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
e2366f7
805099a
 
7b9da4a
 
d6b96dc
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2366f7
7b9da4a
 
 
 
 
 
805099a
7b9da4a
 
 
 
 
 
 
 
 
e2366f7
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
e2366f7
805099a
 
7b9da4a
 
 
 
d6b96dc
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805099a
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
805099a
7b9da4a
 
805099a
 
7b9da4a
 
d6b96dc
7b9da4a
 
805099a
7b9da4a
 
 
 
 
 
0c961d6
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2366f7
7b9da4a
 
e2366f7
7b9da4a
 
 
 
 
 
 
 
 
805099a
 
 
 
7b9da4a
 
 
 
 
d6b96dc
7b9da4a
 
 
 
e2366f7
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2366f7
7b9da4a
 
e2366f7
7b9da4a
 
 
 
 
 
 
 
 
 
 
e3cd24c
 
 
e2366f7
805099a
7b9da4a
805099a
7b9da4a
 
805099a
7b9da4a
 
 
 
e2366f7
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
e2366f7
7b9da4a
 
 
 
 
 
805099a
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
 
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
 
e3cd24c
7b9da4a
 
 
 
e3cd24c
7b9da4a
a01c107
b927143
a01c107
 
b927143
e3cd24c
b927143
a01c107
 
 
 
e3cd24c
b927143
 
 
a01c107
b927143
e3cd24c
 
 
7b9da4a
 
e3cd24c
7b9da4a
805099a
7b9da4a
 
 
e3cd24c
 
b927143
7b9da4a
a01c107
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
a01c107
 
7b9da4a
 
 
 
 
e3cd24c
 
 
e2366f7
e3cd24c
7b9da4a
 
6881cac
 
 
 
 
 
 
 
012529d
 
 
 
 
 
 
 
 
 
805099a
7b9da4a
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c0681
e2366f7
 
 
 
0c961d6
a01c107
35c0681
 
 
 
e2366f7
35c0681
e2366f7
35c0681
 
 
e2366f7
35c0681
 
 
e2366f7
35c0681
 
 
 
 
 
 
 
 
 
 
e2366f7
 
 
 
 
 
 
 
35c0681
 
 
 
e2366f7
a01c107
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c0681
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35c0681
 
e2366f7
35c0681
 
 
 
e2366f7
 
 
 
35c0681
 
 
 
e2366f7
35c0681
 
 
 
 
 
e2366f7
e3cd24c
 
35c0681
0c961d6
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2db874e
 
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c961d6
 
e2366f7
 
 
0c961d6
a01c107
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
 
e2366f7
7b9da4a
 
e2366f7
7b9da4a
 
d6b96dc
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
805099a
e3cd24c
 
 
 
7b9da4a
 
 
 
 
 
 
 
 
 
e2366f7
7b9da4a
 
 
e3cd24c
0c961d6
 
 
 
e2366f7
0c961d6
7b9da4a
 
 
805099a
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2366f7
7b9da4a
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a01c107
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a01c107
e2366f7
 
 
 
7b9da4a
 
 
e2366f7
 
7b9da4a
805099a
e2366f7
e3cd24c
 
805099a
a01c107
 
7b9da4a
805099a
a01c107
 
7b9da4a
805099a
 
e2366f7
7b9da4a
805099a
35c0681
7b9da4a
805099a
 
35c0681
7b9da4a
805099a
35c0681
7b9da4a
805099a
 
35c0681
805099a
7b9da4a
805099a
35c0681
7b9da4a
805099a
 
35c0681
805099a
7b9da4a
805099a
35c0681
7b9da4a
805099a
 
35c0681
805099a
7b9da4a
805099a
35c0681
7b9da4a
805099a
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
 
 
 
 
 
 
 
e2366f7
 
 
 
7b9da4a
 
 
e3cd24c
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
 
 
e3cd24c
35c0681
 
7b9da4a
e2366f7
 
 
 
 
7b9da4a
e2366f7
 
 
7b9da4a
 
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
805099a
7b9da4a
e2366f7
7b9da4a
805099a
 
7b9da4a
 
c8eaa51
 
e2366f7
7b9da4a
e3abb9a
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8eaa51
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38ed81a
e2366f7
 
adada7e
e2366f7
 
 
 
 
 
 
 
adada7e
e2366f7
 
 
adada7e
e2366f7
 
 
7b9da4a
 
8e7296e
 
 
 
e2366f7
7b9da4a
 
 
 
 
 
 
 
 
 
 
 
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
 
e2366f7
7b9da4a
 
 
 
 
 
 
 
e2366f7
 
805099a
7b9da4a
e2366f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9da4a
e2366f7
7b9da4a
 
 
 
e2366f7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
#!/usr/bin/env python3
import argparse
import asyncio
import atexit
import configparser
import hashlib
import json
import logging
import os
import platform
import re
import shutil
import signal
import sqlite3
import subprocess
import sys
import time
from multiprocessing import process
from typing import List, Tuple, Optional, Dict, Callable
import zipfile
from datetime import datetime
from typing import List, Tuple
from typing import Optional
import webbrowser

from bs4 import BeautifulSoup
import gradio as gr
from huggingface_hub import InferenceClient
from playwright.async_api import async_playwright
import requests
from requests.exceptions import RequestException
from SQLite_DB import *
import tiktoken
import trafilatura
import unicodedata
import yt_dlp
# OpenAI Tokenizer support
from openai import OpenAI
from tqdm import tqdm
import tiktoken

#######################

log_level = "DEBUG"
logging.basicConfig(level=getattr(logging, log_level), format='%(asctime)s - %(levelname)s - %(message)s')
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"

#######
# Function Sections
#
# Database Setup
# Config Loading
# System Checks
# DataBase Functions
# Processing Paths and local file handling
# Video Download/Handling
# Audio Transcription
# Diarization
# Chunking-related Techniques & Functions
# Tokenization-related Techniques & Functions
# Summarizers
# Gradio UI
# Main
#
#######

# To Do
# Offline diarization - https://github.com/pyannote/pyannote-audio/blob/develop/tutorials/community/offline_usage_speaker_diarization.ipynb


####
#
#       TL/DW: Too Long Didn't Watch
#
#  Project originally created by https://github.com/the-crypt-keeper
#  Modifications made by https://github.com/rmusser01
#  All credit to the original authors, I've just glued shit together.
#
#
# Usage:
#
#   Download Audio only from URL -> Transcribe audio:
#       python summarize.py https://www.youtube.com/watch?v=4nd1CDZP21s`
#
#   Download Audio+Video from URL -> Transcribe audio from Video:**
#       python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s`
#
#   Download Audio only from URL -> Transcribe audio -> Summarize using (`anthropic`/`cohere`/`openai`/`llama` (llama.cpp)/`ooba` (oobabooga/text-gen-webui)/`kobold` (kobold.cpp)/`tabby` (Tabbyapi)) API:**
#       python summarize.py -v https://www.youtube.com/watch?v=4nd1CDZP21s -api <your choice of API>` - Make sure to put your API key into `config.txt` under the appropriate API variable
#
#   Download Audio+Video from a list of videos in a text file (can be file paths or URLs) and have them all summarized:**
#       python summarize.py ./local/file_on_your/system --api_name <API_name>`
#
#   Run it as a WebApp**
#       python summarize.py -gui` - This requires you to either stuff your API keys into the `config.txt` file, or pass them into the app every time you want to use it.
#           Can be helpful for setting up a shared instance, but not wanting people to perform inference on your server.
#
###

#######################
#       Random issues I've encountered and how I solved them:
#   1. Something about cuda nn library missing, even though cuda is installed...
#       https://github.com/tensorflow/tensorflow/issues/54784 - Basically, installing zlib made it go away. idk.
#
#   2. ERROR: Could not install packages due to an OSError: [WinError 2] The system cannot find the file specified: 'C:\\Python312\\Scripts\\dateparser-download.exe' -> 'C:\\Python312\\Scripts\\dateparser-download.exe.deleteme'
#       Resolved through adding --user to the pip install command
#
#
#######################


#######################
# DB Setup

# Handled by SQLite_DB.py

#######################

######################
# Global Variables
global local_llm_model, \
    userOS, \
    processing_choice, \
    segments, \
    detail_level_number, \
    summary, \
    audio_file, \
    detail_level

process = None


#######################
# Config loading
#

# Read configuration from file
config = configparser.ConfigParser()
config.read('config.txt')

# API Keys
anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None)
logging.debug(f"Loaded Anthropic API Key: {anthropic_api_key}")

cohere_api_key = config.get('API', 'cohere_api_key', fallback=None)
logging.debug(f"Loaded cohere API Key: {cohere_api_key}")

groq_api_key = config.get('API', 'groq_api_key', fallback=None)
logging.debug(f"Loaded groq API Key: {groq_api_key}")

openai_api_key = config.get('API', 'openai_api_key', fallback=None)
logging.debug(f"Loaded openAI Face API Key: {openai_api_key}")

huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None)
logging.debug(f"Loaded HuggingFace Face API Key: {huggingface_api_key}")

# Models
anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229')
cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus')
groq_model = config.get('API', 'groq_model', fallback='llama3-70b-8192')
openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo')
huggingface_model = config.get('API', 'huggingface_model', fallback='CohereForAI/c4ai-command-r-plus')

# Local-Models
kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate')
kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='')
llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions')
llama_api_key = config.get('Local-API', 'llama_api_key', fallback='')
ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions')
ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='')
tabby_api_IP = config.get('Local-API', 'tabby_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate')
tabby_api_key = config.get('Local-API', 'tabby_api_key', fallback=None)
vllm_api_url = config.get('Local-API', 'vllm_api_IP', fallback='http://127.0.0.1:500/api/v1/chat/completions')
vllm_api_key = config.get('Local-API', 'vllm_api_key', fallback=None)

# Chunk settings for timed chunking summarization
DEFAULT_CHUNK_DURATION = config.getint('Settings', 'chunk_duration', fallback='30')
WORDS_PER_SECOND = config.getint('Settings', 'words_per_second', fallback='3')

# Retrieve output paths from the configuration file
output_path = config.get('Paths', 'output_path', fallback='results')

# Retrieve processing choice from the configuration file
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')

# Log file
# logging.basicConfig(filename='debug-runtime.log', encoding='utf-8', level=logging.DEBUG)

#
#
#######################

# Dirty hack - sue me.
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

whisper_models = ["small", "medium", "small.en", "medium.en"]
source_languages = {
    "en": "English",
    "zh": "Chinese",
    "de": "German",
    "es": "Spanish",
    "ru": "Russian",
    "ko": "Korean",
    "fr": "French"
}
source_language_list = [key[0] for key in source_languages.items()]

print(r"""_____  _          ________  _    _                                 
|_   _|| |        / /|  _  \| |  | | _                              
  | |  | |       / / | | | || |  | |(_)                             
  | |  | |      / /  | | | || |/\| |                                
  | |  | |____ / /   | |/ / \  /\  / _                              
  \_/  \_____//_/    |___/   \/  \/ (_)                             


 _                   _                                              
| |                 | |                                             
| |_   ___    ___   | |  ___   _ __    __ _                         
| __| / _ \  / _ \  | | / _ \ | '_ \  / _` |                        
| |_ | (_) || (_) | | || (_) || | | || (_| | _                      
 \__| \___/  \___/  |_| \___/ |_| |_| \__, |( )                     
                                       __/ ||/                      
                                      |___/                         
     _  _      _         _  _                      _          _     
    | |(_)    | |       ( )| |                    | |        | |    
  __| | _   __| | _ __  |/ | |_  __      __  __ _ | |_   ___ | |__  
 / _` || | / _` || '_ \    | __| \ \ /\ / / / _` || __| / __|| '_ \ 
| (_| || || (_| || | | |   | |_   \ V  V / | (_| || |_ | (__ | | | |
 \__,_||_| \__,_||_| |_|    \__|   \_/\_/   \__,_| \__| \___||_| |_|
""")
time.sleep(1)
#######################################################################################################################
# System Checks
#
#

# Perform Platform Check
userOS = ""


def platform_check():
    global userOS
    if platform.system() == "Linux":
        print("Linux OS detected \n Running Linux appropriate commands")
        userOS = "Linux"
    elif platform.system() == "Windows":
        print("Windows OS detected \n Running Windows appropriate commands")
        userOS = "Windows"
    else:
        print("Other OS detected \n Maybe try running things manually?")
        exit()


# Check for NVIDIA GPU and CUDA availability
def cuda_check():
    global processing_choice
    try:
        nvidia_smi = subprocess.check_output("nvidia-smi", shell=True).decode()
        if "NVIDIA-SMI" in nvidia_smi:
            print("NVIDIA GPU with CUDA is available.")
            processing_choice = "cuda"  # Set processing_choice to gpu if NVIDIA GPU with CUDA is available
        else:
            print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.")
            processing_choice = "cpu"  # Set processing_choice to cpu if NVIDIA GPU with CUDA is not available
    except subprocess.CalledProcessError:
        print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.")
        processing_choice = "cpu"  # Set processing_choice to cpu if nvidia-smi command fails


# Ask user if they would like to use either their GPU or their CPU for transcription
def decide_cpugpu():
    global processing_choice
    processing_input = input("Would you like to use your GPU or CPU for transcription? (1/cuda)GPU/(2/cpu)CPU): ")
    if processing_choice == "cuda" and (processing_input.lower() == "cuda" or processing_input == "1"):
        print("You've chosen to use the GPU.")
        logging.debug("GPU is being used for processing")
        processing_choice = "cuda"
    elif processing_input.lower() == "cpu" or processing_input == "2":
        print("You've chosen to use the CPU.")
        logging.debug("CPU is being used for processing")
        processing_choice = "cpu"
    else:
        print("Invalid choice. Please select either GPU or CPU.")


# check for existence of ffmpeg
def check_ffmpeg():
    if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")):
        logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder")
        pass
    else:
        logging.debug("ffmpeg not installed on the local system/in local PATH")
        print(
            "ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of "
            "choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/")
        if userOS == "Windows":
            download_ffmpeg()
        elif userOS == "Linux":
            print(
                "You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg',"
                "'dnf install ffmpeg' or 'pacman', etc.")
        else:
            logging.debug("running an unsupported OS")
            print("You're running an unspported/Un-tested OS")
            exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)")
            if exit_script == "y" or "yes" or "1":
                exit()


# Download ffmpeg
def download_ffmpeg():
    user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ")
    if user_choice.lower() == 'yes' or 'y' or '1':
        print("Downloading ffmpeg")
        url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip"
        response = requests.get(url)

        if response.status_code == 200:
            print("Saving ffmpeg zip file")
            logging.debug("Saving ffmpeg zip file")
            zip_path = "ffmpeg-release-essentials.zip"
            with open(zip_path, 'wb') as file:
                file.write(response.content)

            logging.debug("Extracting the 'ffmpeg.exe' file from the zip")
            print("Extracting ffmpeg.exe from zip file to '/Bin' folder")
            with zipfile.ZipFile(zip_path, 'r') as zip_ref:
                ffmpeg_path = "ffmpeg-7.0-essentials_build/bin/ffmpeg.exe"

                logging.debug("checking if the './Bin' folder exists, creating if not")
                bin_folder = "Bin"
                if not os.path.exists(bin_folder):
                    logging.debug("Creating a folder for './Bin', it didn't previously exist")
                    os.makedirs(bin_folder)

                logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder")
                zip_ref.extract(ffmpeg_path, path=bin_folder)

                logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder")
                src_path = os.path.join(bin_folder, ffmpeg_path)
                dst_path = os.path.join(bin_folder, "ffmpeg.exe")
                shutil.move(src_path, dst_path)

            logging.debug("Removing ffmpeg zip file")
            print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)")
            os.remove(zip_path)

            logging.debug("ffmpeg.exe has been downloaded and extracted to the './Bin' folder.")
            print("ffmpeg.exe has been successfully downloaded and extracted to the './Bin' folder.")
        else:
            logging.error("Failed to download the zip file.")
            print("Failed to download the zip file.")
    else:
        logging.debug("User chose to not download ffmpeg")
        print("ffmpeg will not be downloaded.")


#
#
#######################################################################################################################


########################################################################################################################
# DB Setup
#
#

# FIXME

# DB Functions
#     create_tables()
#     add_keyword()
#     delete_keyword()
#     add_keyword()
#     add_media_with_keywords()
#     search_db()
#     format_results()
#     search_and_display()
#     export_to_csv()
#     is_valid_url()
#     is_valid_date()

#
#
########################################################################################################################


########################################################################################################################
# Processing Paths and local file handling
#
#

def read_paths_from_file(file_path):
    """ Reads a file containing URLs or local file paths and returns them as a list. """
    paths = []  # Initialize paths as an empty list
    with open(file_path, 'r') as file:
        paths = [line.strip() for line in file]
    return paths


def process_path(path):
    """ Decides whether the path is a URL or a local file and processes accordingly. """
    if path.startswith('http'):
        logging.debug("file is a URL")
        # For YouTube URLs, modify to download and extract info
        return get_youtube(path)
    elif os.path.exists(path):
        logging.debug("File is a path")
        # For local files, define a function to handle them
        return process_local_file(path)
    else:
        logging.error(f"Path does not exist: {path}")
        return None


# FIXME
def process_local_file(file_path):
    logging.info(f"Processing local file: {file_path}")
    title = normalize_title(os.path.splitext(os.path.basename(file_path))[0])
    info_dict = {'title': title}
    logging.debug(f"Creating {title} directory...")
    download_path = create_download_directory(title)
    logging.debug(f"Converting '{title}' to an audio file (wav).")
    audio_file = convert_to_wav(file_path)  # Assumes input files are videos needing audio extraction
    logging.debug(f"'{title}' successfully converted to an audio file (wav).")
    return download_path, info_dict, audio_file


#
#
#######################################################################################################################


#######################################################################################################################
# Online Article Extraction / Handling
#

def get_page_title(url: str) -> str:
    try:
        response = requests.get(url)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        title_tag = soup.find('title')
        return title_tag.string.strip() if title_tag else "Untitled"
    except requests.RequestException as e:
        logging.error(f"Error fetching page title: {e}")
        return "Untitled"


def get_article_text(url: str) -> str:
    pass


def get_artice_title(article_url_arg: str) -> str:
    # Use beautifulsoup to get the page title - Really should be using ytdlp for this....
    article_title = get_page_title(article_url_arg)


#
#
#######################################################################################################################


#######################################################################################################################
# Video Download/Handling
#

def sanitize_filename(filename):
    return re.sub(r'[<>:"/\\|?*]', '_', filename)


def get_video_info(url: str) -> dict:
    ydl_opts = {
        'quiet': True,
        'no_warnings': True,
        'skip_download': True,
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        try:
            info_dict = ydl.extract_info(url, download=False)
            return info_dict
        except Exception as e:
            logging.error(f"Error extracting video info: {e}")
            return None


def process_url(url,
                num_speakers,
                whisper_model,
                custom_prompt,
                offset,
                api_name,
                api_key,
                vad_filter,
                download_video,
                download_audio,
                rolling_summarization,
                detail_level,
                question_box,
                keywords,
                chunk_summarization,
                chunk_duration_input,
                words_per_second_input,
                ):
    # Validate input
    if not url:
        return "No URL provided.", "No URL provided.", None, None, None, None, None, None

    if not is_valid_url(url):
        return "Invalid URL format.", "Invalid URL format.", None, None, None, None, None, None

    print("API Name received:", api_name)  # Debugging line

    logging.info(f"Processing URL: {url}")
    video_file_path = None

    try:
        # Instantiate the database, db as a instance of the Database class
        db = Database()
        media_url = url

        info_dict = get_youtube(url)  # Extract video information using yt_dlp
        media_title = info_dict['title'] if 'title' in info_dict else 'Untitled'

        results = main(url, api_name=api_name, api_key=api_key,
                       num_speakers=num_speakers,
                       whisper_model=whisper_model,
                       offset=offset,
                       vad_filter=vad_filter,
                       download_video_flag=download_video,
                       custom_prompt=custom_prompt,
                       overwrite=args.overwrite,
                       rolling_summarization=rolling_summarization,
                       detail=detail_level,
                       keywords=keywords,
                       chunk_summarization=chunk_summarization,
                       chunk_duration=chunk_duration_input,
                       words_per_second=words_per_second_input,
                       )

        if not results:
            return "No URL provided.", "No URL provided.", None, None, None, None, None, None

        transcription_result = results[0]
        transcription_text = json.dumps(transcription_result['transcription'], indent=2)
        summary_text = transcription_result.get('summary', 'Summary not available')

        # Prepare file paths for transcription and summary
        # Sanitize filenames
        audio_file_sanitized = sanitize_filename(transcription_result['audio_file'])
        json_file_path = audio_file_sanitized.replace('.wav', '.segments_pretty.json')
        summary_file_path = audio_file_sanitized.replace('.wav', '_summary.txt')

        logging.debug(f"Transcription result: {transcription_result}")
        logging.debug(f"Audio file path: {transcription_result['audio_file']}")

        # Write the transcription to the JSON File
        try:
            with open(json_file_path, 'w') as json_file:
                json.dump(transcription_result['transcription'], json_file, indent=2)
        except IOError as e:
            logging.error(f"Error writing transcription to JSON file: {e}")

        # Write the summary to the summary file
        with open(summary_file_path, 'w') as summary_file:
            summary_file.write(summary_text)

        if download_video:
            video_file_path = transcription_result['video_path'] if 'video_path' in transcription_result else None

        # Check if files exist before returning paths
        if not os.path.exists(json_file_path):
            raise FileNotFoundError(f"File not found: {json_file_path}")
        if not os.path.exists(summary_file_path):
            raise FileNotFoundError(f"File not found: {summary_file_path}")

        formatted_transcription = format_transcription(transcription_result)

        # Check for chunk summarization
        if chunk_summarization:
            chunk_duration = chunk_duration_input if chunk_duration_input else DEFAULT_CHUNK_DURATION
            words_per_second = words_per_second_input if words_per_second_input else WORDS_PER_SECOND
            summary_text = summarize_chunks(api_name, api_key, transcription_result['transcription'], chunk_duration,
                                            words_per_second)

        # FIXME - This is a mess
        # # Check for time-based chunking summarization
        # if time_based_summarization:
        #     logging.info("MAIN: Time-based Summarization")
        #
        #     # Set the json_file_path
        #     json_file_path = audio_file.replace('.wav', '.segments.json')
        #
        #     # Perform time-based summarization
        #     summary = time_chunk_summarize(api_name, api_key, json_file_path, time_chunk_duration, custom_prompt)
        #
        #     # Handle the summarized output
        #     if summary:
        #         transcription_result['summary'] = summary
        #         logging.info("MAIN: Time-based Summarization successful.")
        #         save_summary_to_file(summary, json_file_path)
        #     else:
        #         logging.warning("MAIN: Time-based Summarization failed.")

        # Add media to the database
        try:
            # Ensure these variables are correctly populated
            custom_prompt = args.custom_prompt if args.custom_prompt else ("\n\nabove is the transcript of a video "
                "Please read through the transcript carefully. Identify the main topics that are discussed over the "
                "course of the transcript. Then, summarize the key points about each main topic in a concise bullet "
                "point. The bullet points should cover the key information conveyed about each topic in the video, "
                "but should be much shorter than the full transcript. Please output your bullet point summary inside "
                "<bulletpoints> tags.")

            db = Database()
            create_tables()
            media_url = url
            # FIXME  - IDK?
            video_info = get_video_info(media_url)
            media_title = get_page_title(media_url)
            media_type = "video"
            media_content = transcription_text
            keyword_list = keywords.split(',') if keywords else ["default"]
            media_keywords = ', '.join(keyword_list)
            media_author = "auto_generated"
            media_ingestion_date = datetime.now().strftime('%Y-%m-%d')
            transcription_model = whisper_model  # Add the transcription model used

            # Log the values before calling the function
            logging.info(f"Media URL: {media_url}")
            logging.info(f"Media Title: {media_title}")
            logging.info(f"Media Type: {media_type}")
            logging.info(f"Media Content: {media_content}")
            logging.info(f"Media Keywords: {media_keywords}")
            logging.info(f"Media Author: {media_author}")
            logging.info(f"Ingestion Date: {media_ingestion_date}")
            logging.info(f"Custom Prompt: {custom_prompt}")
            logging.info(f"Summary Text: {summary_text}")
            logging.info(f"Transcription Model: {transcription_model}")

            # Check if any required field is empty
            if not media_url or not media_title or not media_type or not media_content or not media_keywords or not custom_prompt or not summary_text:
                raise InputError("Please provide all required fields.")

            add_media_with_keywords(
                url=media_url,
                title=media_title,
                media_type=media_type,
                content=media_content,
                keywords=media_keywords,
                prompt=custom_prompt,
                summary=summary_text,
                transcription_model=transcription_model,  # Pass the transcription model
                author=media_author,
                ingestion_date=media_ingestion_date
            )
        except Exception as e:
            logging.error(f"Failed to add media to the database: {e}")

        if summary_file_path and os.path.exists(summary_file_path):
            return transcription_text, summary_text, json_file_path, summary_file_path, video_file_path, None  # audio_file_path
        else:
            return transcription_text, summary_text, json_file_path, None, video_file_path, None  # audio_file_path
    except Exception as e:
        logging.error(f"Error processing URL: {e}")
        return str(e), 'Error processing the request.', None, None, None, None


def create_download_directory(title):
    base_dir = "Results"
    # Remove characters that are illegal in Windows filenames and normalize
    safe_title = normalize_title(title)
    logging.debug(f"{title} successfully normalized")
    session_path = os.path.join(base_dir, safe_title)
    if not os.path.exists(session_path):
        os.makedirs(session_path, exist_ok=True)
        logging.debug(f"Created directory for downloaded video: {session_path}")
    else:
        logging.debug(f"Directory already exists for downloaded video: {session_path}")
    return session_path


def normalize_title(title):
    # Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters
    title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii')
    title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?',
                                                                                                                   '').replace(
        '<', '').replace('>', '').replace('|', '')
    return title


def get_youtube(video_url):
    ydl_opts = {
        'format': 'bestaudio[ext=m4a]',
        'noplaylist': False,
        'quiet': True,
        'extract_flat': True
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        logging.debug("About to extract youtube info")
        info_dict = ydl.extract_info(video_url, download=False)
        logging.debug("Youtube info successfully extracted")
    return info_dict


def get_playlist_videos(playlist_url):
    ydl_opts = {
        'extract_flat': True,
        'skip_download': True,
        'quiet': True
    }

    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        info = ydl.extract_info(playlist_url, download=False)

        if 'entries' in info:
            video_urls = [entry['url'] for entry in info['entries']]
            playlist_title = info['title']
            return video_urls, playlist_title
        else:
            print("No videos found in the playlist.")
            return [], None


def save_to_file(video_urls, filename):
    with open(filename, 'w') as file:
        file.write('\n'.join(video_urls))
    print(f"Video URLs saved to {filename}")


def download_video(video_url, download_path, info_dict, download_video_flag):
    logging.debug("About to normalize downloaded video title")
    title = normalize_title(info_dict['title'])

    if not download_video_flag:
        file_path = os.path.join(download_path, f"{title}.m4a")
        ydl_opts = {
            'format': 'bestaudio[ext=m4a]',
            'outtmpl': file_path,
        }
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            logging.debug("yt_dlp: About to download audio with youtube-dl")
            ydl.download([video_url])
            logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl")
        return file_path
    else:
        video_file_path = os.path.join(download_path, f"{title}_video.mp4")
        audio_file_path = os.path.join(download_path, f"{title}_audio.m4a")
        ydl_opts_video = {
            'format': 'bestvideo[ext=mp4]',
            'outtmpl': video_file_path,
        }
        ydl_opts_audio = {
            'format': 'bestaudio[ext=m4a]',
            'outtmpl': audio_file_path,
        }

        with yt_dlp.YoutubeDL(ydl_opts_video) as ydl:
            logging.debug("yt_dlp: About to download video with youtube-dl")
            ydl.download([video_url])
            logging.debug("yt_dlp: Video successfully downloaded with youtube-dl")

        with yt_dlp.YoutubeDL(ydl_opts_audio) as ydl:
            logging.debug("yt_dlp: About to download audio with youtube-dl")
            ydl.download([video_url])
            logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl")

        output_file_path = os.path.join(download_path, f"{title}.mp4")

        if sys.platform.startswith('win'):
            logging.debug("Running ffmpeg on Windows...")
            ffmpeg_command = [
                '.\\Bin\\ffmpeg.exe',
                '-i', video_file_path,
                '-i', audio_file_path,
                '-c:v', 'copy',
                '-c:a', 'copy',
                output_file_path
            ]
            subprocess.run(ffmpeg_command, check=True)
        elif userOS == "Linux":
            logging.debug("Running ffmpeg on Linux...")
            ffmpeg_command = [
                'ffmpeg',
                '-i', video_file_path,
                '-i', audio_file_path,
                '-c:v', 'copy',
                '-c:a', 'copy',
                output_file_path
            ]
            subprocess.run(ffmpeg_command, check=True)
        else:
            logging.error("ffmpeg: Unsupported operating system for video download and merging.")
            raise RuntimeError("ffmpeg: Unsupported operating system for video download and merging.")
        os.remove(video_file_path)
        os.remove(audio_file_path)

        return output_file_path


def read_paths_from_file(file_path: str) -> List[str]:
    """Read paths from a text file."""
    with open(file_path, 'r') as file:
        paths = file.readlines()
    return [path.strip() for path in paths]


def save_summary_to_file(summary: str, file_path: str):
    """Save summary to a JSON file."""
    summary_data = {'summary': summary, 'generated_at': datetime.now().isoformat()}
    with open(file_path, 'w') as file:
        json.dump(summary_data, file, indent=4)


def extract_text_from_segments(segments: List[Dict]) -> str:
    """Extract text from segments."""
    return " ".join([segment['text'] for segment in segments])


#
#
#######################################################################################################################


#######################################################################################################################
# Audio Transcription
#
# Convert video .m4a into .wav using ffmpeg
#   ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav"
#       https://www.gyan.dev/ffmpeg/builds/
#


# os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
def convert_to_wav(video_file_path, offset=0, overwrite=False):
    out_path = os.path.splitext(video_file_path)[0] + ".wav"

    if os.path.exists(out_path) and not overwrite:
        print(f"File '{out_path}' already exists. Skipping conversion.")
        logging.info(f"Skipping conversion as file already exists: {out_path}")
        return out_path
    print("Starting conversion process of .m4a to .WAV")
    out_path = os.path.splitext(video_file_path)[0] + ".wav"

    try:
        if os.name == "nt":
            logging.debug("ffmpeg being ran on windows")

            if sys.platform.startswith('win'):
                ffmpeg_cmd = ".\\Bin\\ffmpeg.exe"
                logging.debug(f"ffmpeg_cmd: {ffmpeg_cmd}")
            else:
                ffmpeg_cmd = 'ffmpeg'  # Assume 'ffmpeg' is in PATH for non-Windows systems

            command = [
                ffmpeg_cmd,  # Assuming the working directory is correctly set where .\Bin exists
                "-ss", "00:00:00",  # Start at the beginning of the video
                "-i", video_file_path,
                "-ar", "16000",  # Audio sample rate
                "-ac", "1",  # Number of audio channels
                "-c:a", "pcm_s16le",  # Audio codec
                out_path
            ]
            try:
                # Redirect stdin from null device to prevent ffmpeg from waiting for input
                with open(os.devnull, 'rb') as null_file:
                    result = subprocess.run(command, stdin=null_file, text=True, capture_output=True)
                if result.returncode == 0:
                    logging.info("FFmpeg executed successfully")
                    logging.debug("FFmpeg output: %s", result.stdout)
                else:
                    logging.error("Error in running FFmpeg")
                    logging.error("FFmpeg stderr: %s", result.stderr)
                    raise RuntimeError(f"FFmpeg error: {result.stderr}")
            except Exception as e:
                logging.error("Error occurred - ffmpeg doesn't like windows")
                raise RuntimeError("ffmpeg failed")
        elif os.name == "posix":
            os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
        else:
            raise RuntimeError("Unsupported operating system")
        logging.info("Conversion to WAV completed: %s", out_path)
    except subprocess.CalledProcessError as e:
        logging.error("Error executing FFmpeg command: %s", str(e))
        raise RuntimeError("Error converting video file to WAV")
    except Exception as e:
        logging.error("Unexpected error occurred: %s", str(e))
        raise RuntimeError("Error converting video file to WAV")
    return out_path


# Transcribe .wav into .segments.json
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False):
    logging.info('speech-to-text: Loading faster_whisper model: %s', whisper_model)
    from faster_whisper import WhisperModel
    model = WhisperModel(whisper_model, device=f"{processing_choice}")
    time_start = time.time()
    if audio_file_path is None:
        raise ValueError("speech-to-text: No audio file provided")
    logging.info("speech-to-text: Audio file path: %s", audio_file_path)

    try:
        _, file_ending = os.path.splitext(audio_file_path)
        out_file = audio_file_path.replace(file_ending, ".segments.json")
        prettified_out_file = audio_file_path.replace(file_ending, ".segments_pretty.json")
        if os.path.exists(out_file):
            logging.info("speech-to-text: Segments file already exists: %s", out_file)
            with open(out_file) as f:
                global segments
                segments = json.load(f)
            return segments

        logging.info('speech-to-text: Starting transcription...')
        options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter)
        transcribe_options = dict(task="transcribe", **options)
        segments_raw, info = model.transcribe(audio_file_path, **transcribe_options)

        segments = []
        for segment_chunk in segments_raw:
            chunk = {
                "start": segment_chunk.start,
                "end": segment_chunk.end,
                "text": segment_chunk.text
            }
            logging.debug("Segment: %s", chunk)
            segments.append(chunk)
        logging.info("speech-to-text: Transcription completed with faster_whisper")

        # Save prettified JSON
        with open(prettified_out_file, 'w') as f:
            json.dump(segments, f, indent=2)

        # Save non-prettified JSON
        with open(out_file, 'w') as f:
            json.dump(segments, f)

    except Exception as e:
        logging.error("speech-to-text: Error transcribing audio: %s", str(e))
        raise RuntimeError("speech-to-text: Error transcribing audio")
    return segments


#
#
#######################################################################################################################


#######################################################################################################################
# Diarization
#
# TODO: https://huggingface.co/pyannote/speaker-diarization-3.1
# embedding_model = "pyannote/embedding", embedding_size=512
# embedding_model = "speechbrain/spkrec-ecapa-voxceleb", embedding_size=192
#     def speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0):
#         """
#         1. Generating speaker embeddings for each segments.
#         2. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
#         """
#         try:
#             from pyannote.audio import Audio
#             from pyannote.core import Segment
#             from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
#             import numpy as np
#             import pandas as pd
#             from sklearn.cluster import AgglomerativeClustering
#             from sklearn.metrics import silhouette_score
#             import tqdm
#             import wave
#
#             embedding_model = PretrainedSpeakerEmbedding( embedding_model, device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
#
#
#             _,file_ending = os.path.splitext(f'{video_file_path}')
#             audio_file = video_file_path.replace(file_ending, ".wav")
#             out_file = video_file_path.replace(file_ending, ".diarize.json")
#
#             logging.debug("getting duration of audio file")
#             with contextlib.closing(wave.open(audio_file,'r')) as f:
#                 frames = f.getnframes()
#                 rate = f.getframerate()
#                 duration = frames / float(rate)
#             logging.debug("duration of audio file obtained")
#             print(f"duration of audio file: {duration}")
#
#             def segment_embedding(segment):
#                 logging.debug("Creating embedding")
#                 audio = Audio()
#                 start = segment["start"]
#                 end = segment["end"]
#
#                 # Enforcing a minimum segment length
#                 if end-start < 0.3:
#                     padding = 0.3-(end-start)
#                     start -= padding/2
#                     end += padding/2
#                     print('Padded segment because it was too short:',segment)
#
#                 # Whisper overshoots the end timestamp in the last segment
#                 end = min(duration, end)
#                 # clip audio and embed
#                 clip = Segment(start, end)
#                 waveform, sample_rate = audio.crop(audio_file, clip)
#                 return embedding_model(waveform[None])
#
#             embeddings = np.zeros(shape=(len(segments), embedding_size))
#             for i, segment in enumerate(tqdm.tqdm(segments)):
#                 embeddings[i] = segment_embedding(segment)
#             embeddings = np.nan_to_num(embeddings)
#             print(f'Embedding shape: {embeddings.shape}')
#
#             if num_speakers == 0:
#             # Find the best number of speakers
#                 score_num_speakers = {}
#
#                 for num_speakers in range(2, 10+1):
#                     clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
#                     score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
#                     score_num_speakers[num_speakers] = score
#                 best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
#                 print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
#             else:
#                 best_num_speaker = num_speakers
#
#             # Assign speaker label
#             clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
#             labels = clustering.labels_
#             for i in range(len(segments)):
#                 segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
#
#             with open(out_file,'w') as f:
#                 f.write(json.dumps(segments, indent=2))
#
#             # Make CSV output
#             def convert_time(secs):
#                 return datetime.timedelta(seconds=round(secs))
#
#             objects = {
#                 'Start' : [],
#                 'End': [],
#                 'Speaker': [],
#                 'Text': []
#             }
#             text = ''
#             for (i, segment) in enumerate(segments):
#                 if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
#                     objects['Start'].append(str(convert_time(segment["start"])))
#                     objects['Speaker'].append(segment["speaker"])
#                     if i != 0:
#                         objects['End'].append(str(convert_time(segments[i - 1]["end"])))
#                         objects['Text'].append(text)
#                         text = ''
#                 text += segment["text"] + ' '
#             objects['End'].append(str(convert_time(segments[i - 1]["end"])))
#             objects['Text'].append(text)
#
#             save_path = video_file_path.replace(file_ending, ".csv")
#             df_results = pd.DataFrame(objects)
#             df_results.to_csv(save_path)
#             return df_results, save_path
#
#         except Exception as e:
#             raise RuntimeError("Error Running inference with local model", e)
#
#
#######################################################################################################################


#######################################################################################################################
# Chunking-related Techniques & Functions
#
#

######### Words-per-second Chunking #########
def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]:
    words = transcript.split()
    words_per_chunk = chunk_duration * words_per_second
    chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)]
    return chunks


def summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int,
                     words_per_second: int) -> str:
    if api_name not in summarizers:  # See 'summarizers' dict in the main script
        return f"Unsupported API: {api_name}"

    summarizer = summarizers[api_name]
    text = extract_text_from_segments(transcript)
    chunks = chunk_transcript(text, chunk_duration, words_per_second)

    summaries = []
    for chunk in chunks:
        if api_name == 'openai':
            # Ensure the correct model and prompt are passed
            summaries.append(summarizer(api_key, chunk, custom_prompt))
        else:
            summaries.append(summarizer(api_key, chunk))

    return "\n\n".join(summaries)


################## ####################


######### Token-size Chunking ######### FIXME - OpenAI only currently
# This is dirty and shameful and terrible. It should be replaced with a proper implementation.
# anyways lets get to it....
client = OpenAI(api_key=openai_api_key)


def get_chat_completion(messages, model='gpt-4-turbo'):
    response = client.chat.completions.create(
        model=model,
        messages=messages,
        temperature=0,
    )
    return response.choices[0].message.content


# This function chunks a text into smaller pieces based on a maximum token count and a delimiter
def chunk_on_delimiter(input_string: str,
                       max_tokens: int,
                       delimiter: str) -> List[str]:
    chunks = input_string.split(delimiter)
    combined_chunks, _, dropped_chunk_count = combine_chunks_with_no_minimum(
        chunks, max_tokens, chunk_delimiter=delimiter, add_ellipsis_for_overflow=True)
    if dropped_chunk_count > 0:
        print(f"Warning: {dropped_chunk_count} chunks were dropped due to exceeding the token limit.")
    combined_chunks = [f"{chunk}{delimiter}" for chunk in combined_chunks]
    return combined_chunks


# This function combines text chunks into larger blocks without exceeding a specified token count.
#   It returns the combined chunks, their original indices, and the number of dropped chunks due to overflow.
def combine_chunks_with_no_minimum(
        chunks: List[str],
        max_tokens: int,
        chunk_delimiter="\n\n",
        header: Optional[str] = None,
        add_ellipsis_for_overflow=False,
) -> Tuple[List[str], List[int]]:
    dropped_chunk_count = 0
    output = []  # list to hold the final combined chunks
    output_indices = []  # list to hold the indices of the final combined chunks
    candidate = (
        [] if header is None else [header]
    )  # list to hold the current combined chunk candidate
    candidate_indices = []
    for chunk_i, chunk in enumerate(chunks):
        chunk_with_header = [chunk] if header is None else [header, chunk]
        # FIXME MAKE NOT OPENAI SPECIFIC
        if len(openai_tokenize(chunk_delimiter.join(chunk_with_header))) > max_tokens:
            print(f"warning: chunk overflow")
            if (
                    add_ellipsis_for_overflow
                    # FIXME MAKE NOT OPENAI SPECIFIC
                    and len(openai_tokenize(chunk_delimiter.join(candidate + ["..."]))) <= max_tokens
            ):
                candidate.append("...")
                dropped_chunk_count += 1
            continue  # this case would break downstream assumptions
        # estimate token count with the current chunk added
        # FIXME MAKE NOT OPENAI SPECIFIC
        extended_candidate_token_count = len(openai_tokenize(chunk_delimiter.join(candidate + [chunk])))
        # If the token count exceeds max_tokens, add the current candidate to output and start a new candidate
        if extended_candidate_token_count > max_tokens:
            output.append(chunk_delimiter.join(candidate))
            output_indices.append(candidate_indices)
            candidate = chunk_with_header  # re-initialize candidate
            candidate_indices = [chunk_i]
        # otherwise keep extending the candidate
        else:
            candidate.append(chunk)
            candidate_indices.append(chunk_i)
    # add the remaining candidate to output if it's not empty
    if (header is not None and len(candidate) > 1) or (header is None and len(candidate) > 0):
        output.append(chunk_delimiter.join(candidate))
        output_indices.append(candidate_indices)
    return output, output_indices, dropped_chunk_count


def rolling_summarize(text: str,
                      detail: float = 0,
                      model: str = 'gpt-4-turbo',
                      additional_instructions: Optional[str] = None,
                      minimum_chunk_size: Optional[int] = 500,
                      chunk_delimiter: str = ".",
                      summarize_recursively=False,
                      verbose=False):
    """
    Summarizes a given text by splitting it into chunks, each of which is summarized individually.
    The level of detail in the summary can be adjusted, and the process can optionally be made recursive.

    Parameters: - text (str): The text to be summarized. - detail (float, optional): A value between 0 and 1
    indicating the desired level of detail in the summary. 0 leads to a higher level summary, and 1 results in a more
    detailed summary. Defaults to 0. - model (str, optional): The model to use for generating summaries. Defaults to
    'gpt-3.5-turbo'. - additional_instructions (Optional[str], optional): Additional instructions to provide to the
    model for customizing summaries. - minimum_chunk_size (Optional[int], optional): The minimum size for text
    chunks. Defaults to 500. - chunk_delimiter (str, optional): The delimiter used to split the text into chunks.
    Defaults to ".". - summarize_recursively (bool, optional): If True, summaries are generated recursively,
    using previous summaries for context. - verbose (bool, optional): If True, prints detailed information about the
    chunking process.

    Returns:
    - str: The final compiled summary of the text.

    The function first determines the number of chunks by interpolating between a minimum and a maximum chunk count
    based on the `detail` parameter. It then splits the text into chunks and summarizes each chunk. If
    `summarize_recursively` is True, each summary is based on the previous summaries, adding more context to the
    summarization process. The function returns a compiled summary of all chunks.
    """

    # check detail is set correctly
    assert 0 <= detail <= 1

    # interpolate the number of chunks based to get specified level of detail
    max_chunks = len(chunk_on_delimiter(text, minimum_chunk_size, chunk_delimiter))
    min_chunks = 1
    num_chunks = int(min_chunks + detail * (max_chunks - min_chunks))

    # adjust chunk_size based on interpolated number of chunks
    # FIXME MAKE NOT OPENAI SPECIFIC
    document_length = len(openai_tokenize(text))
    chunk_size = max(minimum_chunk_size, document_length // num_chunks)
    text_chunks = chunk_on_delimiter(text, chunk_size, chunk_delimiter)
    if verbose:
        print(f"Splitting the text into {len(text_chunks)} chunks to be summarized.")
        # FIXME MAKE NOT OPENAI SPECIFIC
        print(f"Chunk lengths are {[len(openai_tokenize(x)) for x in text_chunks]}")

    # set system message
    system_message_content = "Rewrite this text in summarized form."
    if additional_instructions is not None:
        system_message_content += f"\n\n{additional_instructions}"

    accumulated_summaries = []
    for chunk in tqdm(text_chunks):
        if summarize_recursively and accumulated_summaries:
            # Creating a structured prompt for recursive summarization
            accumulated_summaries_string = '\n\n'.join(accumulated_summaries)
            user_message_content = f"Previous summaries:\n\n{accumulated_summaries_string}\n\nText to summarize next:\n\n{chunk}"
        else:
            # Directly passing the chunk for summarization without recursive context
            user_message_content = chunk

        # Constructing messages based on whether recursive summarization is applied
        messages = [
            {"role": "system", "content": system_message_content},
            {"role": "user", "content": user_message_content}
        ]

        # Assuming this function gets the completion and works as expected
        response = get_chat_completion(messages, model=model)
        accumulated_summaries.append(response)

    # Compile final summary from partial summaries
    global final_summary
    final_summary = '\n\n'.join(accumulated_summaries)

    return final_summary


#######################################


######### Words-per-second Chunking #########
# FIXME - WHole section needs to be re-written
def chunk_transcript(transcript: str, chunk_duration: int, words_per_second) -> List[str]:
    words = transcript.split()
    words_per_chunk = chunk_duration * words_per_second
    chunks = [' '.join(words[i:i + words_per_chunk]) for i in range(0, len(words), words_per_chunk)]
    return chunks


def summarize_chunks(api_name: str, api_key: str, transcript: List[dict], chunk_duration: int,
                     words_per_second: int) -> str:
    if api_name not in summarizers:  # See 'summarizers' dict in the main script
        return f"Unsupported API: {api_name}"

    if not transcript:
        logging.error("Empty or None transcript provided to summarize_chunks")
        return "Error: Empty or None transcript provided"

    text = extract_text_from_segments(transcript)
    chunks = chunk_transcript(text, chunk_duration, words_per_second)

    custom_prompt = args.custom_prompt

    summaries = []
    for chunk in chunks:
        if api_name == 'openai':
            # Ensure the correct model and prompt are passed
            summaries.append(summarize_with_openai(api_key, chunk, custom_prompt))
        elif api_name == 'anthropic':
            summaries.append(summarize_with_cohere(api_key, chunk, anthropic_model, custom_prompt))
        elif api_name == 'cohere':
            summaries.append(summarize_with_claude(api_key, chunk, cohere_model, custom_prompt))
        elif api_name == 'groq':
            summaries.append(summarize_with_groq(api_key, chunk, groq_model, custom_prompt))
        elif api_name == 'llama':
            summaries.append(summarize_with_llama(llama_api_IP, chunk, api_key, custom_prompt))
        elif api_name == 'kobold':
            summaries.append(summarize_with_kobold(kobold_api_IP, chunk, api_key, custom_prompt))
        elif api_name == 'ooba':
            summaries.append(summarize_with_oobabooga(ooba_api_IP, chunk, api_key, custom_prompt))
        elif api_name == 'tabbyapi':
            summaries.append(summarize_with_vllm(api_key, tabby_api_IP, chunk, llm_model, custom_prompt))
        elif api_name == 'local-llm':
            summaries.append(summarize_with_local_llm(chunk, custom_prompt))
        else:
            return f"Unsupported API: {api_name}"

    return "\n\n".join(summaries)


#######################################

#
#
#######################################################################################################################


#######################################################################################################################
# Tokenization-related Techniques & Functions
#
#

def openai_tokenize(text: str) -> List[str]:
    encoding = tiktoken.encoding_for_model('gpt-4-turbo')
    return encoding.encode(text)


# openai summarize chunks

#
#
#######################################################################################################################


#######################################################################################################################
# Website-related Techniques & Functions
#
#

def scrape_article(url):
    async def fetch_html(url: str) -> str:
        async with async_playwright() as p:
            browser = await p.chromium.launch(headless=True)
            context = await browser.new_context(
                user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3")
            page = await context.new_page()
            await page.goto(url)
            await page.wait_for_load_state("networkidle")  # Wait for the network to be idle
            content = await page.content()
            await browser.close()
            return content

    def extract_article_data(html: str) -> dict:
        downloaded = trafilatura.extract(html, include_comments=False, include_tables=False, include_images=False)
        if downloaded:
            metadata = trafilatura.extract_metadata(html)
            if metadata:
                return {
                    'title': metadata.title if metadata.title else 'N/A',
                    'author': metadata.author if metadata.author else 'N/A',
                    'content': downloaded,
                    'date': metadata.date if metadata.date else 'N/A',
                }
            else:
                print("Metadata extraction failed.")
                return None
        else:
            print("Content extraction failed.")
            return None

    def convert_html_to_markdown(html: str) -> str:
        soup = BeautifulSoup(html, 'html.parser')
        # Convert each paragraph to markdown
        for para in soup.find_all('p'):
            para.append('\n')  # Add a newline at the end of each paragraph for markdown separation

        # Use .get_text() with separator to keep paragraph separation
        text = soup.get_text(separator='\n\n')

        return text

    async def fetch_and_extract_article(url: str):
        html = await fetch_html(url)
        print("HTML Content:", html[:500])  # Print first 500 characters of the HTML for inspection
        article_data = extract_article_data(html)
        if article_data:
            article_data['content'] = convert_html_to_markdown(article_data['content'])
            return article_data
        else:
            return None

    # Using asyncio.run to handle event loop creation and execution
    article_data = asyncio.run(fetch_and_extract_article(url))
    return article_data


def ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date, custom_prompt):
    try:
        # Check if content is not empty or whitespace
        if not content.strip():
            raise ValueError("Content is empty.")

        db = Database()
        create_tables()
        keyword_list = keywords.split(',') if keywords else ["default"]
        keyword_str = ', '.join(keyword_list)

        # Set default values for missing fields
        url = url or 'Unknown'
        title = title or 'Unknown'
        author = author or 'Unknown'
        keywords = keywords or 'default'
        summary = summary or 'No summary available'
        ingestion_date = ingestion_date or datetime.now().strftime('%Y-%m-%d')

        # Log the values of all fields before calling add_media_with_keywords
        logging.debug(f"URL: {url}")
        logging.debug(f"Title: {title}")
        logging.debug(f"Author: {author}")
        logging.debug(f"Content: {content[:50]}... (length: {len(content)})")  # Log first 50 characters of content
        logging.debug(f"Keywords: {keywords}")
        logging.debug(f"Summary: {summary}")
        logging.debug(f"Ingestion Date: {ingestion_date}")
        logging.debug(f"Custom Prompt: {custom_prompt}")

        # Check if any required field is empty and log the specific missing field
        if not url:
            logging.error("URL is missing.")
            raise ValueError("URL is missing.")
        if not title:
            logging.error("Title is missing.")
            raise ValueError("Title is missing.")
        if not content:
            logging.error("Content is missing.")
            raise ValueError("Content is missing.")
        if not keywords:
            logging.error("Keywords are missing.")
            raise ValueError("Keywords are missing.")
        if not summary:
            logging.error("Summary is missing.")
            raise ValueError("Summary is missing.")
        if not ingestion_date:
            logging.error("Ingestion date is missing.")
            raise ValueError("Ingestion date is missing.")
        if not custom_prompt:
            logging.error("Custom prompt is missing.")
            raise ValueError("Custom prompt is missing.")

        # Add media with keywords to the database
        result = add_media_with_keywords(
            url=url,
            title=title,
            media_type='article',
            content=content,
            keywords=keyword_str or "article_default",
            prompt=custom_prompt or None,
            summary=summary or "No summary generated",
            transcription_model=None,  # or some default value if applicable
            author=author or 'Unknown',
            ingestion_date=ingestion_date
        )
        return result
    except Exception as e:
        logging.error(f"Failed to ingest article to the database: {e}")
        return str(e)


def scrape_and_summarize(url, custom_prompt_arg, api_name, api_key, keywords, custom_article_title):
    # Step 1: Scrape the article
    article_data = scrape_article(url)
    print(f"Scraped Article Data: {article_data}")  # Debugging statement
    if not article_data:
        return "Failed to scrape the article."

    # Use the custom title if provided, otherwise use the scraped title
    title = custom_article_title.strip() if custom_article_title else article_data.get('title', 'Untitled')
    author = article_data.get('author', 'Unknown')
    content = article_data.get('content', '')
    ingestion_date = datetime.now().strftime('%Y-%m-%d')

    print(f"Title: {title}, Author: {author}, Content Length: {len(content)}")  # Debugging statement

    # Custom prompt for the article
    article_custom_prompt = custom_prompt_arg or "Summarize this article."

    # Step 2: Summarize the article
    summary = None
    if api_name:
        logging.debug(f"Article_Summarizer: Summarization being performed by {api_name}")

        # Sanitize filename for saving the JSON file
        sanitized_title = sanitize_filename(title)
        json_file_path = os.path.join("Results", f"{sanitized_title}_segments.json")

        with open(json_file_path, 'w') as json_file:
            json.dump([{'text': content}], json_file, indent=2)

        try:
            if api_name.lower() == 'openai':
                openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', fallback=None)
                logging.debug(f"Article_Summarizer: trying to summarize with openAI")
                summary = summarize_with_openai(openai_api_key, json_file_path, article_custom_prompt)
            elif api_name.lower() == "anthropic":
                anthropic_api_key = api_key if api_key else config.get('API', 'anthropic_api_key', fallback=None)
                logging.debug(f"Article_Summarizer: Trying to summarize with anthropic")
                summary = summarize_with_claude(anthropic_api_key, json_file_path, anthropic_model,
                                                custom_prompt_arg=article_custom_prompt)
            elif api_name.lower() == "cohere":
                cohere_api_key = api_key if api_key else config.get('API', 'cohere_api_key', fallback=None)
                logging.debug(f"Article_Summarizer: Trying to summarize with cohere")
                summary = summarize_with_cohere(cohere_api_key, json_file_path, cohere_model,
                                                custom_prompt_arg=article_custom_prompt)
            elif api_name.lower() == "groq":
                groq_api_key = api_key if api_key else config.get('API', 'groq_api_key', fallback=None)
                logging.debug(f"Article_Summarizer: Trying to summarize with Groq")
                summary = summarize_with_groq(groq_api_key, json_file_path, groq_model,
                                              custom_prompt_arg=article_custom_prompt)
            elif api_name.lower() == "llama":
                llama_token = api_key if api_key else config.get('API', 'llama_api_key', fallback=None)
                llama_ip = llama_api_IP
                logging.debug(f"Article_Summarizer: Trying to summarize with Llama.cpp")
                summary = summarize_with_llama(llama_ip, json_file_path, llama_token, article_custom_prompt)
            elif api_name.lower() == "kobold":
                kobold_token = api_key if api_key else config.get('API', 'kobold_api_key', fallback=None)
                kobold_ip = kobold_api_IP
                logging.debug(f"Article_Summarizer: Trying to summarize with kobold.cpp")
                summary = summarize_with_kobold(kobold_ip, json_file_path, kobold_token, article_custom_prompt)
            elif api_name.lower() == "ooba":
                ooba_token = api_key if api_key else config.get('API', 'ooba_api_key', fallback=None)
                ooba_ip = ooba_api_IP
                logging.debug(f"Article_Summarizer: Trying to summarize with oobabooga")
                summary = summarize_with_oobabooga(ooba_ip, json_file_path, ooba_token, article_custom_prompt)
            elif api_name.lower() == "tabbyapi":
                tabbyapi_key = api_key if api_key else config.get('API', 'tabby_api_key', fallback=None)
                tabbyapi_ip = tabby_api_IP
                logging.debug(f"Article_Summarizer: Trying to summarize with tabbyapi")
                tabby_model = llm_model
                summary = summarize_with_tabbyapi(tabbyapi_key, tabbyapi_ip, json_file_path, tabby_model,
                                                  article_custom_prompt)
            elif api_name.lower() == "vllm":
                logging.debug(f"Article_Summarizer: Trying to summarize with VLLM")
                summary = summarize_with_vllm(vllm_api_url, vllm_api_key, llm_model, json_file_path,
                                              article_custom_prompt)
            elif api_name.lower() == "huggingface":
                huggingface_api_key = api_key if api_key else config.get('API', 'huggingface_api_key', fallback=None)
                logging.debug(f"Article_Summarizer: Trying to summarize with huggingface")
                summary = summarize_with_huggingface(huggingface_api_key, json_file_path, article_custom_prompt)
        except requests.exceptions.ConnectionError as e:
            logging.error(f"Connection error while trying to summarize with {api_name}: {str(e)}")

        if summary:
            logging.info(f"Article_Summarizer: Summary generated using {api_name} API")
            save_summary_to_file(summary, json_file_path)
        else:
            summary = "Summary not available"
            logging.warning(f"Failed to generate summary using {api_name} API")

    else:
        summary = "Article Summarization: No API provided for summarization."

    print(f"Summary: {summary}")  # Debugging statement

    # Step 3: Ingest the article into the database
    ingestion_result = ingest_article_to_db(url, title, author, content, keywords, summary, ingestion_date,
                                            article_custom_prompt)

    return f"Title: {title}\nAuthor: {author}\nSummary: {summary}\nIngestion Result: {ingestion_result}"


def ingest_unstructured_text(text, custom_prompt, api_name, api_key, keywords, custom_article_title):
    title = custom_article_title.strip() if custom_article_title else "Unstructured Text"
    author = "Unknown"
    ingestion_date = datetime.now().strftime('%Y-%m-%d')

    # Summarize the unstructured text
    if api_name:
        json_file_path = f"Results/{title.replace(' ', '_')}_segments.json"
        with open(json_file_path, 'w') as json_file:
            json.dump([{'text': text}], json_file, indent=2)

        if api_name.lower() == 'openai':
            summary = summarize_with_openai(api_key, json_file_path, custom_prompt)
        # Add other APIs as needed
        else:
            summary = "Unsupported API."
    else:
        summary = "No API provided for summarization."

    # Ingest the unstructured text into the database
    ingestion_result = ingest_article_to_db('Unstructured Text', title, author, text, keywords, summary, ingestion_date,
                                            custom_prompt)
    return f"Title: {title}\nSummary: {summary}\nIngestion Result: {ingestion_result}"


#
#
#######################################################################################################################


#######################################################################################################################
# Summarizers
#
#

# Fixme , function is replicated....
def extract_text_from_segments(segments):
    logging.debug(f"Main: extracting text from {segments}")
    text = ' '.join([segment['text'] for segment in segments])
    logging.debug(f"Main: Successfully extracted text from {segments}")
    return text


def summarize_with_openai(api_key, file_path, custom_prompt_arg):
    try:
        logging.debug("openai: Loading json data for summarization")
        with open(file_path, 'r') as file:
            segments = json.load(file)

        open_ai_model = openai_model or 'gpt-4-turbo'

        logging.debug("openai: Extracting text from the segments")
        text = extract_text_from_segments(segments)

        headers = {
            'Authorization': f'Bearer {api_key}',
            'Content-Type': 'application/json'
        }

        logging.debug(f"openai: API Key is: {api_key}")
        logging.debug("openai: Preparing data + prompt for submittal")
        openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
        data = {
            "model": open_ai_model,
            "messages": [
                {
                    "role": "system",
                    "content": "You are a professional summarizer."
                },
                {
                    "role": "user",
                    "content": openai_prompt
                }
            ],
            "max_tokens": 8192,  # Adjust tokens as needed
            "temperature": 0.1
        }
        logging.debug("openai: Posting request")
        response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)

        if response.status_code == 200:
            response_data = response.json()
            if 'choices' in response_data and len(response_data['choices']) > 0:
                summary = response_data['choices'][0]['message']['content'].strip()
                logging.debug("openai: Summarization successful")
                print("openai: Summarization successful.")
                return summary
            else:
                logging.warning("openai: Summary not found in the response data")
                return "openai: Summary not available"
        else:
            logging.debug("openai: Summarization failed")
            print("openai: Failed to process summary:", response.text)
            return "openai: Failed to process summary"
    except Exception as e:
        logging.debug("openai: Error in processing: %s", str(e))
        print("openai: Error occurred while processing summary with openai:", str(e))
        return "openai: Error occurred while processing summary"


def summarize_with_claude(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5):
    try:
        logging.debug("anthropic: Loading JSON data")
        with open(file_path, 'r') as file:
            segments = json.load(file)

        logging.debug("anthropic: Extracting text from the segments file")
        text = extract_text_from_segments(segments)

        headers = {
            'x-api-key': api_key,
            'anthropic-version': '2023-06-01',
            'Content-Type': 'application/json'
        }

        anthropic_prompt = custom_prompt_arg  # Sanitize the custom prompt
        logging.debug(f"anthropic: Prompt is {anthropic_prompt}")
        user_message = {
            "role": "user",
            "content": f"{text} \n\n\n\n{anthropic_prompt}"
        }

        data = {
            "model": model,
            "max_tokens": 4096,  # max _possible_ tokens to return
            "messages": [user_message],
            "stop_sequences": ["\n\nHuman:"],
            "temperature": 0.1,
            "top_k": 0,
            "top_p": 1.0,
            "metadata": {
                "user_id": "example_user_id",
            },
            "stream": False,
            "system": "You are a professional summarizer."
        }

        for attempt in range(max_retries):
            try:
                logging.debug("anthropic: Posting request to API")
                response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)

                # Check if the status code indicates success
                if response.status_code == 200:
                    logging.debug("anthropic: Post submittal successful")
                    response_data = response.json()
                    try:
                        summary = response_data['content'][0]['text'].strip()
                        logging.debug("anthropic: Summarization successful")
                        print("Summary processed successfully.")
                        return summary
                    except (IndexError, KeyError) as e:
                        logging.debug("anthropic: Unexpected data in response")
                        print("Unexpected response format from Claude API:", response.text)
                        return None
                elif response.status_code == 500:  # Handle internal server error specifically
                    logging.debug("anthropic: Internal server error")
                    print("Internal server error from API. Retrying may be necessary.")
                    time.sleep(retry_delay)
                else:
                    logging.debug(
                        f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}")
                    print(f"Failed to process summary, status code {response.status_code}: {response.text}")
                    return None

            except RequestException as e:
                logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}")
                if attempt < max_retries - 1:
                    time.sleep(retry_delay)
                else:
                    return f"anthropic: Network error: {str(e)}"

    except FileNotFoundError as e:
        logging.error(f"anthropic: File not found: {file_path}")
        return f"anthropic: File not found: {file_path}"
    except json.JSONDecodeError as e:
        logging.error(f"anthropic: Invalid JSON format in file: {file_path}")
        return f"anthropic: Invalid JSON format in file: {file_path}"
    except Exception as e:
        logging.error(f"anthropic: Error in processing: {str(e)}")
        return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}"


# Summarize with Cohere
def summarize_with_cohere(api_key, file_path, model, custom_prompt_arg):
    try:
        logging.debug("cohere: Loading JSON data")
        with open(file_path, 'r') as file:
            segments = json.load(file)

        logging.debug(f"cohere: Extracting text from segments file")
        text = extract_text_from_segments(segments)

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
            'Authorization': f'Bearer {api_key}'
        }

        cohere_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
        logging.debug("cohere: Prompt being sent is {cohere_prompt}")

        data = {
            "chat_history": [
                {"role": "USER", "message": cohere_prompt}
            ],
            "message": "Please provide a summary.",
            "model": model,
            "connectors": [{"id": "web-search"}]
        }

        logging.debug("cohere: Submitting request to API endpoint")
        print("cohere: Submitting request to API endpoint")
        response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data)
        response_data = response.json()
        logging.debug("API Response Data: %s", response_data)

        if response.status_code == 200:
            if 'text' in response_data:
                summary = response_data['text'].strip()
                logging.debug("cohere: Summarization successful")
                print("Summary processed successfully.")
                return summary
            else:
                logging.error("Expected data not found in API response.")
                return "Expected data not found in API response."
        else:
            logging.error(f"cohere: API request failed with status code {response.status_code}: {response.text}")
            print(f"Failed to process summary, status code {response.status_code}: {response.text}")
            return f"cohere: API request failed: {response.text}"

    except Exception as e:
        logging.error("cohere: Error in processing: %s", str(e))
        return f"cohere: Error occurred while processing summary with Cohere: {str(e)}"


# https://console.groq.com/docs/quickstart
def summarize_with_groq(api_key, file_path, model, custom_prompt_arg):
    try:
        logging.debug("groq: Loading JSON data")
        with open(file_path, 'r') as file:
            segments = json.load(file)

        logging.debug(f"groq: Extracting text from segments file")
        text = extract_text_from_segments(segments)

        headers = {
            'Authorization': f'Bearer {api_key}',
            'Content-Type': 'application/json'
        }

        groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
        logging.debug("groq: Prompt being sent is {groq_prompt}")

        data = {
            "messages": [
                {
                    "role": "user",
                    "content": groq_prompt
                }
            ],
            "model": model
        }

        logging.debug("groq: Submitting request to API endpoint")
        print("groq: Submitting request to API endpoint")
        response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)

        response_data = response.json()
        logging.debug("API Response Data: %s", response_data)

        if response.status_code == 200:
            if 'choices' in response_data and len(response_data['choices']) > 0:
                summary = response_data['choices'][0]['message']['content'].strip()
                logging.debug("groq: Summarization successful")
                print("Summarization successful.")
                return summary
            else:
                logging.error("Expected data not found in API response.")
                return "Expected data not found in API response."
        else:
            logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
            return f"groq: API request failed: {response.text}"

    except Exception as e:
        logging.error("groq: Error in processing: %s", str(e))
        return f"groq: Error occurred while processing summary with groq: {str(e)}"


#################################
#
# Local Summarization

def summarize_with_local_llm(file_path, custom_prompt_arg):
    try:
        logging.debug("Local LLM: Loading json data for summarization")
        with open(file_path, 'r') as file:
            segments = json.load(file)

        logging.debug("Local LLM: Extracting text from the segments")
        text = extract_text_from_segments(segments)

        headers = {
            'Content-Type': 'application/json'
        }

        logging.debug("Local LLM: Preparing data + prompt for submittal")
        local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
        data = {
            "messages": [
                {
                    "role": "system",
                    "content": "You are a professional summarizer."
                },
                {
                    "role": "user",
                    "content": local_llm_prompt
                }
            ],
            "max_tokens": 28000,  # Adjust tokens as needed
        }
        logging.debug("Local LLM: Posting request")
        response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data)

        if response.status_code == 200:
            response_data = response.json()
            if 'choices' in response_data and len(response_data['choices']) > 0:
                summary = response_data['choices'][0]['message']['content'].strip()
                logging.debug("Local LLM: Summarization successful")
                print("Local LLM: Summarization successful.")
                return summary
            else:
                logging.warning("Local LLM: Summary not found in the response data")
                return "Local LLM: Summary not available"
        else:
            logging.debug("Local LLM: Summarization failed")
            print("Local LLM: Failed to process summary:", response.text)
            return "Local LLM: Failed to process summary"
    except Exception as e:
        logging.debug("Local LLM: Error in processing: %s", str(e))
        print("Error occurred while processing summary with Local LLM:", str(e))
        return "Local LLM: Error occurred while processing summary"

def summarize_with_llama(api_url, file_path, token, custom_prompt):
    try:
        logging.debug("llama: Loading JSON data")
        with open(file_path, 'r') as file:
            segments = json.load(file)

        logging.debug(f"llama: Extracting text from segments file")
        text = extract_text_from_segments(segments)  # Define this function to extract text properly

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
        }
        if len(token) > 5:
            headers['Authorization'] = f'Bearer {token}'

        llama_prompt = f"{text} \n\n\n\n{custom_prompt}"
        logging.debug("llama: Prompt being sent is {llama_prompt}")

        data = {
            "prompt": llama_prompt
        }

        logging.debug("llama: Submitting request to API endpoint")
        print("llama: Submitting request to API endpoint")
        response = requests.post(api_url, headers=headers, json=data)
        response_data = response.json()
        logging.debug("API Response Data: %s", response_data)

        if response.status_code == 200:
            # if 'X' in response_data:
            logging.debug(response_data)
            summary = response_data['content'].strip()
            logging.debug("llama: Summarization successful")
            print("Summarization successful.")
            return summary
        else:
            logging.error(f"llama: API request failed with status code {response.status_code}: {response.text}")
            return f"llama: API request failed: {response.text}"

    except Exception as e:
        logging.error("llama: Error in processing: %s", str(e))
        return f"llama: Error occurred while processing summary with llama: {str(e)}"


# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate
def summarize_with_kobold(api_url, file_path, kobold_api_token, custom_prompt):
    try:
        logging.debug("kobold: Loading JSON data")
        with open(file_path, 'r') as file:
            segments = json.load(file)

        logging.debug(f"kobold: Extracting text from segments file")
        text = extract_text_from_segments(segments)

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
        }

        kobold_prompt = f"{text} \n\n\n\n{custom_prompt}"
        logging.debug("kobold: Prompt being sent is {kobold_prompt}")

        # FIXME
        # Values literally c/p from the api docs....
        data = {
            "max_context_length": 8096,
            "max_length": 4096,
            "prompt": kobold_prompt,
        }

        logging.debug("kobold: Submitting request to API endpoint")
        print("kobold: Submitting request to API endpoint")
        response = requests.post(api_url, headers=headers, json=data)
        response_data = response.json()
        logging.debug("kobold: API Response Data: %s", response_data)

        if response.status_code == 200:
            if 'results' in response_data and len(response_data['results']) > 0:
                summary = response_data['results'][0]['text'].strip()
                logging.debug("kobold: Summarization successful")
                print("Summarization successful.")
                return summary
            else:
                logging.error("Expected data not found in API response.")
                return "Expected data not found in API response."
        else:
            logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}")
            return f"kobold: API request failed: {response.text}"

    except Exception as e:
        logging.error("kobold: Error in processing: %s", str(e))
        return f"kobold: Error occurred while processing summary with kobold: {str(e)}"


# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API
def summarize_with_oobabooga(api_url, file_path, ooba_api_token, custom_prompt):
    try:
        logging.debug("ooba: Loading JSON data")
        with open(file_path, 'r') as file:
            segments = json.load(file)

        logging.debug(f"ooba: Extracting text from segments file\n\n\n")
        text = extract_text_from_segments(segments)
        logging.debug(f"ooba: Finished extracting text from segments file")

        headers = {
            'accept': 'application/json',
            'content-type': 'application/json',
        }

        # prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It
        # is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are
        # my favorite." prompt_text += f"\n\n{text}"  # Uncomment this line if you want to include the text variable
        ooba_prompt = "{text}\n\n\n\n{custom_prompt}"
        logging.debug("ooba: Prompt being sent is {ooba_prompt}")

        data = {
            "mode": "chat",
            "character": "Example",
            "messages": [{"role": "user", "content": ooba_prompt}]
        }

        logging.debug("ooba: Submitting request to API endpoint")
        print("ooba: Submitting request to API endpoint")
        response = requests.post(api_url, headers=headers, json=data, verify=False)
        logging.debug("ooba: API Response Data: %s", response)

        if response.status_code == 200:
            response_data = response.json()
            summary = response.json()['choices'][0]['message']['content']
            logging.debug("ooba: Summarization successful")
            print("Summarization successful.")
            return summary
        else:
            logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}")
            return f"ooba: API request failed with status code {response.status_code}: {response.text}"

    except Exception as e:
        logging.error("ooba: Error in processing: %s", str(e))
        return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"


# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs.
def summarize_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg):
    vllm_client = OpenAI(
        base_url=vllm_api_url,
        api_key=vllm_api_key_function_arg
    )

    custom_prompt = vllm_custom_prompt_function_arg

    completion = client.chat.completions.create(
        model=llm_model,
        messages=[
            {"role": "system", "content": "You are a professional summarizer."},
            {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
        ]
    )
    vllm_summary = completion.choices[0].message.content
    return vllm_summary


# FIXME - Install is more trouble than care to deal with right now.
def summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt):
    model = tabby_model
    headers = {
        'Authorization': f'Bearer {tabby_api_key}',
        'Content-Type': 'application/json'
    }
    data = {
        'text': text,
        'model': 'tabby'  # Specify the model if needed
    }
    try:
        response = requests.post('https://api.tabbyapi.com/summarize', headers=headers, json=data)
        response.raise_for_status()
        summary = response.json().get('summary', '')
        return summary
    except requests.exceptions.RequestException as e:
        logger.error(f"Error summarizing with TabbyAPI: {e}")
        return "Error summarizing with TabbyAPI."


def save_summary_to_file(summary, file_path):
    logging.debug("Now saving summary to file...")
    summary_file_path = file_path.replace('.segments.json', '_summary.txt')
    logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
    with open(summary_file_path, 'w') as file:
        file.write(summary)
    logging.info(f"Summary saved to file: {summary_file_path}")


summarizers: Dict[str, Callable[[str, str], str]] = {
    'tabbyapi': summarize_with_tabbyapi,
    'openai': summarize_with_openai,
    'anthropic': summarize_with_claude,
    'cohere': summarize_with_cohere,
    'groq': summarize_with_groq,
    'llama': summarize_with_llama,
    'kobold': summarize_with_kobold,
    'oobabooga': summarize_with_oobabooga
    # Add more APIs here as needed
}


#
#
#######################################################################################################################


#######################################################################################################################
# Summarization with Detail
#

def summarize_with_detail_openai(text, detail, verbose=False):
    summary_with_detail_variable = rolling_summarize(text, detail=detail, verbose=True)
    print(len(openai_tokenize(summary_with_detail_variable)))
    return summary_with_detail_variable


def summarize_with_detail_recursive_openai(text, detail, verbose=False):
    summary_with_recursive_summarization = rolling_summarize(text, detail=detail, summarize_recursively=True)
    print(summary_with_recursive_summarization)


#
#
#######################################################################################################################


#######################################################################################################################
# Gradio UI
#

# Only to be used when configured with Gradio for HF Space
def summarize_with_huggingface(huggingface_api_key, json_file_path, custom_prompt):
    logging.debug(f"huggingface: Summarization process starting...")
    client = InferenceClient()

    #model = "microsoft/Phi-3-mini-128k-instruct"
    model = "CohereForAI/c4ai-command-r-plus"
    API_URL = f"https://api-inference.huggingface.co/models/{model}"
    headers = {"Authorization": f"Bearer {huggingface_api_key}"}

    client = InferenceClient(model=f"{model}", token=f"{huggingface_api_key}")

    response = client.post(json={"inputs": "The goal of life is [MASK]."}, model="bert-base-uncased")

    with open(json_file_path, 'r') as file:
        segments = json.load(file)
    text = ''.join([segment['text'] for segment in segments])

    hf_prompt = text + "\n\n\n\n" + custom_prompt

    if huggingface_api_key == "":
        api_key = os.getenv(HF_TOKEN)
        logging.debug("HUGGINGFACE API KEY CHECK: " + huggingface_api_key)
    try:
        logging.debug("huggingface: Loading json data for summarization")
        with open(json_file_path, 'r') as file:
            segments = json.load(file)

        logging.debug("huggingface: Extracting text from the segments")
        text = ' '.join([segment['text'] for segment in segments])

        #api_key = os.getenv('HF_TOKEN').replace('"', '')
        logging.debug("HUGGINGFACE API KEY CHECK #2: " + huggingface_api_key)

        logging.debug("huggingface: Submitting request...")
        response = client.text_generation(prompt=hf_prompt, max_new_tokens=4096)
        if response is not None:
            return response
        #if response == FIXME:
            #logging.debug("huggingface: Summarization successful")
            #print("Summarization successful.")
            #return response
        #elif Bad Stuff:
            # logging.debug(f"huggingface: Model is currently loading...{response.status_code}: {response.text}")
            # global waiting_summary
            # pretty_json = json.dumps(json.loads(response.text), indent=4)  # Prettify JSON
            # waiting_summary = f" {pretty_json} "  # Use prettified JSON
            # return waiting_summary
        else:
            logging.error(f"huggingface: Summarization failed with status code {response}")
            return f"Failed to process summary, huggingface library error: {response}"
    except Exception as e:
        logging.error("huggingface: Error in processing: %s", str(e))
        print(f"Error occurred while processing summary with huggingface: {str(e)}")
        return None

    # FIXME
    # This is here for gradio authentication
    # Its just not setup.
    # def same_auth(username, password):
    #    return username == password


def format_transcription(transcription_result):
    if transcription_result:
        json_data = transcription_result['transcription']
        return json.dumps(json_data, indent=2)
    else:
        return ""


def format_file_path(file_path, fallback_path=None):
    if file_path and os.path.exists(file_path):
        logging.debug(f"File exists: {file_path}")
        return file_path
    elif fallback_path and os.path.exists(fallback_path):
        logging.debug(f"File does not exist: {file_path}. Returning fallback path: {fallback_path}")
        return fallback_path
    else:
        logging.debug(f"File does not exist: {file_path}. No fallback path available.")
        return None


def search_media(query, fields, keyword, page):
    try:
        results = search_and_display(query, fields, keyword, page)
        return results
    except Exception as e:
        logger.error(f"Error searching media: {e}")
        return str(e)


# FIXME - Change to use 'check_api()' function - also, create 'check_api()' function
def ask_question(transcription, question, api_name, api_key):
    if not question.strip():
        return "Please enter a question."

        prompt = f"""Transcription:\n{transcription}

        Given the above transcription, please answer the following:\n\n{question}"""

        # FIXME - Refactor main API checks so they're their own function - api_check()
        # Call api_check() function here

        if api_name.lower() == "openai":
            openai_api_key = api_key if api_key else config.get('API', 'openai_api_key', fallback=None)
            headers = {
                'Authorization': f'Bearer {openai_api_key}',
                'Content-Type': 'application/json'
            }
            if openai_model:
                pass
            else:
                openai_model = 'gpt-4-turbo'
            data = {
                "model": openai_model,
                "messages": [
                    {
                        "role": "system",
                        "content": "You are a helpful assistant that answers questions based on the given "
                                   "transcription and summary."
                    },
                    {
                        "role": "user",
                        "content": prompt
                    }
                ],
                "max_tokens": 150000,
                "temperature": 0.1
            }
            response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)

        if response.status_code == 200:
            answer = response.json()['choices'][0]['message']['content'].strip()
            return answer
        else:
            return "Failed to process the question."
    else:
        return "Question answering is currently only supported with the OpenAI API."


import gradio as gr


def launch_ui(demo_mode=False):
    whisper_models = ["small.en", "medium.en", "large"]

    with gr.Blocks() as iface:
        # Tab 1: Audio Transcription + Summarization
        with gr.Tab("Audio Transcription + Summarization"):

            with gr.Row():
                # Light/Dark mode toggle switch
                theme_toggle = gr.Radio(choices=["Light", "Dark"], value="Light",
                                        label="Light/Dark Mode Toggle (Toggle to change UI color scheme)")

                # UI Mode toggle switch
                ui_mode_toggle = gr.Radio(choices=["Simple", "Advanced"], value="Simple",
                                          label="UI Mode (Toggle to show all options)")

            # URL input is always visible
            url_input = gr.Textbox(label="URL (Mandatory)", placeholder="Enter the video URL here")

            # Inputs to be shown or hidden
            num_speakers_input = gr.Number(value=2, label="Number of Speakers(Optional - Currently has no effect)",
                                           visible=False)
            whisper_model_input = gr.Dropdown(choices=whisper_models, value="small.en",
                                              label="Whisper Model(This is the ML model used for transcription.)",
                                              visible=False)
            custom_prompt_input = gr.Textbox(
                label="Custom Prompt (Customize your summarization, or ask a question about the video and have it "
                      "answered)",
                placeholder="Above is the transcript of a video. Please read "
                            "through the transcript carefully. Identify the main topics that are discussed over the "
                            "course of the transcript. Then, summarize the key points about each main topic in a "
                            "concise bullet point. The bullet points should cover the key information conveyed about "
                            "each topic in the video, but should be much shorter than the full transcript. Please "
                            "output your bullet point summary inside <bulletpoints> tags.",
                lines=3, visible=True)
            offset_input = gr.Number(value=0, label="Offset (Seconds into the video to start transcribing at)",
                                     visible=False)
            api_name_input = gr.Dropdown(
                choices=[None, "Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "Llama.cpp", "Kobold", "Ooba", "HuggingFace"],
                value=None,
                label="(Optional) The LLM endpoint to have summarize your request. If you're running a local model, select 'Local-LLM'",
                visible=True)
            api_key_input = gr.Textbox(label="API Key (Mandatory unless you're running a local model/server/no API selected)",
                                       placeholder="Enter your API key here; Ignore if using Local API or Built-in API('Local-LLM')",
                                       visible=True)
            vad_filter_input = gr.Checkbox(label="VAD Filter (WIP)", value=False,
                                           visible=False)
            rolling_summarization_input = gr.Checkbox(label="Enable Rolling Summarization", value=False,
                                                      visible=False)
            download_video_input = gr.components.Checkbox(label="Download Video(Select to allow for file download of "
                                                                "selected video)", value=False, visible=False)
            download_audio_input = gr.components.Checkbox(label="Download Audio(Select to allow for file download of "
                                                                "selected Video's Audio)", value=False, visible=False)
            detail_level_input = gr.Slider(minimum=0.01, maximum=1.0, value=0.01, step=0.01, interactive=True,
                                           label="Summary Detail Level (Slide me) (Only OpenAI currently supported)",
                                           visible=False)
            keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated Example: "
                                                                      "tag_one,tag_two,tag_three)",
                                        value="default,no_keyword_set",
                                        visible=True)
            question_box_input = gr.Textbox(label="Question",
                                            placeholder="Enter a question to ask about the transcription",
                                            visible=False)
            chunk_summarization_input = gr.Checkbox(label="Time-based Chunk Summarization",
                                                    value=False,
                                                    visible=False)
            chunk_duration_input = gr.Number(label="Chunk Duration (seconds)", value=DEFAULT_CHUNK_DURATION,
                                             visible=False)
            words_per_second_input = gr.Number(label="Words per Second", value=WORDS_PER_SECOND,
                                               visible=False)
            # time_based_summarization_input = gr.Checkbox(label="Enable Time-based Summarization", value=False,
            # visible=False) time_chunk_duration_input = gr.Number(label="Time Chunk Duration (seconds)", value=60,
            # visible=False) llm_model_input = gr.Dropdown(label="LLM Model", choices=["gpt-4o", "gpt-4-turbo",
            # "claude-3-sonnet-20240229", "command-r-plus", "CohereForAI/c4ai-command-r-plus", "llama3-70b-8192"],
            # value="gpt-4o", visible=False)

            inputs = [
                num_speakers_input, whisper_model_input, custom_prompt_input, offset_input, api_name_input,
                api_key_input, vad_filter_input, download_video_input, download_audio_input,
                rolling_summarization_input, detail_level_input, question_box_input, keywords_input,
                chunk_summarization_input, chunk_duration_input, words_per_second_input
            ]
            # inputs_1 = [
            #     url_input_1,
            #     num_speakers_input, whisper_model_input, custom_prompt_input_1, offset_input, api_name_input_1,
            #     api_key_input_1, vad_filter_input, download_video_input, download_audio_input,
            #     rolling_summarization_input, detail_level_input, question_box_input, keywords_input_1,
            #     chunk_summarization_input, chunk_duration_input, words_per_second_input,
            #     time_based_summarization_input, time_chunk_duration_input, llm_model_input
            # ]

            outputs = [
                gr.Textbox(label="Transcription (Resulting Transcription from your input URL)"),
                gr.Textbox(label="Summary or Status Message (Current status of Summary or Summary itself)"),
                gr.File(label="Download Transcription as JSON (Download the Transcription as a file)"),
                gr.File(label="Download Summary as Text (Download the Summary as a file)"),
                gr.File(label="Download Video (Download the Video as a file)", visible=False),
                gr.File(label="Download Audio (Download the Audio as a file)", visible=False),
            ]

            def toggle_light(mode):
                if mode == "Dark":
                    return """
                    <style>
                        body {
                            background-color: #1c1c1c;
                            color: #ffffff;
                        }
                        .gradio-container {
                            background-color: #1c1c1c;
                            color: #ffffff;
                        }
                        .gradio-button {
                            background-color: #4c4c4c;
                            color: #ffffff;
                        }
                        .gradio-input {
                            background-color: #4c4c4c;
                            color: #ffffff;
                        }
                        .gradio-dropdown {
                            background-color: #4c4c4c;
                            color: #ffffff;
                        }
                        .gradio-slider {
                            background-color: #4c4c4c;
                        }
                        .gradio-checkbox {
                            background-color: #4c4c4c;
                        }
                        .gradio-radio {
                            background-color: #4c4c4c;
                        }
                        .gradio-textbox {
                            background-color: #4c4c4c;
                            color: #ffffff;
                        }
                        .gradio-label {
                            color: #ffffff;
                        }
                    </style>
                    """
                else:
                    return """
                    <style>
                        body {
                            background-color: #ffffff;
                            color: #000000;
                        }
                        .gradio-container {
                            background-color: #ffffff;
                            color: #000000;
                        }
                        .gradio-button {
                            background-color: #f0f0f0;
                            color: #000000;
                        }
                        .gradio-input {
                            background-color: #f0f0f0;
                            color: #000000;
                        }
                        .gradio-dropdown {
                            background-color: #f0f0f0;
                            color: #000000;
                        }
                        .gradio-slider {
                            background-color: #f0f0f0;
                        }
                        .gradio-checkbox {
                            background-color: #f0f0f0;
                        }
                        .gradio-radio {
                            background-color: #f0f0f0;
                        }
                        .gradio-textbox {
                            background-color: #f0f0f0;
                            color: #000000;
                        }
                        .gradio-label {
                            color: #000000;
                        }
                    </style>
                    """

            # Set the event listener for the Light/Dark mode toggle switch
            theme_toggle.change(fn=toggle_light, inputs=theme_toggle, outputs=gr.HTML())

            # Function to toggle visibility of advanced inputs
            def toggle_ui(mode):
                visible = (mode == "Advanced")
                return [
                    gr.update(visible=True) if i in [0, 3, 5, 6, 13] else gr.update(visible=visible)
                    for i in range(len(inputs))
                ]

            # Set the event listener for the UI Mode toggle switch
            ui_mode_toggle.change(fn=toggle_ui, inputs=ui_mode_toggle, outputs=inputs)

            # Combine URL input and inputs lists
            all_inputs = [url_input] + inputs

            gr.Interface(
                fn=process_url,
                inputs=all_inputs,
                outputs=outputs,
                title="Video Transcription and Summarization",
                description="Submit a video URL for transcription and summarization. Ensure you input all necessary "
                            "information including API keys."
            )

        # Tab 2: Scrape & Summarize Articles/Websites
        with gr.Tab("Scrape & Summarize Articles/Websites"):
            url_input = gr.Textbox(label="Article URL", placeholder="Enter the article URL here")
            custom_article_title_input = gr.Textbox(label="Custom Article Title (Optional)",
                                                    placeholder="Enter a custom title for the article")
            custom_prompt_input = gr.Textbox(
                label="Custom Prompt (Optional)",
                placeholder="Provide a custom prompt for summarization",
                lines=3
            )
            api_name_input = gr.Dropdown(
                choices=[None, "huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"],
                value=None,
                label="API Name (Mandatory for Summarization)"
            )
            api_key_input = gr.Textbox(label="API Key (Mandatory if API Name is specified)",
                                       placeholder="Enter your API key here; Ignore if using Local API or Built-in API")
            keywords_input = gr.Textbox(label="Keywords", placeholder="Enter keywords here (comma-separated)",
                                        value="default,no_keyword_set", visible=True)

            scrape_button = gr.Button("Scrape and Summarize")
            result_output = gr.Textbox(label="Result")

            scrape_button.click(scrape_and_summarize, inputs=[url_input, custom_prompt_input, api_name_input,
                                                              api_key_input, keywords_input,
                                                              custom_article_title_input], outputs=result_output)

            gr.Markdown("### Or Paste Unstructured Text Below (Will use settings from above)")
            text_input = gr.Textbox(label="Unstructured Text", placeholder="Paste unstructured text here", lines=10)
            text_ingest_button = gr.Button("Ingest Unstructured Text")
            text_ingest_result = gr.Textbox(label="Result")

            text_ingest_button.click(ingest_unstructured_text,
                                     inputs=[text_input, custom_prompt_input, api_name_input, api_key_input,
                                             keywords_input, custom_article_title_input], outputs=text_ingest_result)

        with gr.Tab("Ingest & Summarize Documents"):
            gr.Markdown("Plan to put ingestion form for documents here")
            gr.Markdown("Will ingest documents and store into SQLite DB")
            gr.Markdown("RAG here we come....:/")

        with gr.Tab("Sample Prompts/Questions"):
            gr.Markdown("Plan to put Sample prompts/questions here")
            gr.Markdown("Fabric prompts/live UI?")
            # Searchable list
            with gr.Row():
                search_box = gr.Textbox(label="Search prompts", placeholder="Type to filter prompts")
                search_result = gr.Textbox(label="Matching prompts", interactive=False)
                search_box.change(search_prompts, inputs=search_box, outputs=search_result)

            # Interactive list
            with gr.Row():
                prompt_selector = gr.Radio(choices=all_prompts, label="Select a prompt")
                selected_output = gr.Textbox(label="Selected prompt")
                prompt_selector.change(handle_prompt_selection, inputs=prompt_selector, outputs=selected_output)

            # Categorized display
            with gr.Accordion("Category 1"):
                gr.Markdown("\n".join(prompts_category_1))
            with gr.Accordion("Category 2"):
                gr.Markdown("\n".join(prompts_category_2))

    # Gradio interface setup with tabs
    search_tab = gr.Interface(
        fn=search_and_display,
        inputs=[
            gr.Textbox(label="Search Query", placeholder="Enter your search query here..."),
            gr.CheckboxGroup(label="Search Fields", choices=["Title", "Content", "URL", "Type", "Author"],
                             value=["Title"]),
            gr.Textbox(label="Keyword", placeholder="Enter keywords here..."),
            gr.Number(label="Page", value=1, precision=0),
            gr.Checkbox(visible=False)  # Dummy input to match the expected number of arguments
        ],
        outputs=[
            gr.Dataframe(label="Search Results"),
            gr.Textbox(label="Message", visible=False)
        ],
        title="Search Media Summaries",
        description="Search for media (documents, videos, articles) and their summaries in the database. Use keywords for better filtering.",
        allow_flagging="never"
    )

    export_tab = gr.Interface(
        fn=export_to_csv,
        inputs=[
            gr.Textbox(label="Search Query", placeholder="Enter your search query here..."),
            gr.CheckboxGroup(label="Search Fields", choices=["Title", "Content"], value=["Title"]),
            gr.Textbox(label="Keyword (Match ALL, can use multiple keywords, separated by ',' (comma) )",
                       placeholder="Enter keywords here..."),
            gr.Number(label="Page", value=1, precision=0),
            gr.Number(label="Results per File", value=1000, precision=0)
        ],
        outputs="text",
        title="Export Search Results to CSV",
        description="Export the search results to a CSV file."
    )

    keyword_add_interface = gr.Interface(
        fn=add_keyword,
        inputs=gr.Textbox(label="Add Keywords (comma-separated)", placeholder="Enter keywords here..."),
        outputs="text",
        title="Add Keywords",
        description="Add one, or multiple keywords to the database.",
        allow_flagging="never"
    )

    keyword_delete_interface = gr.Interface(
        fn=delete_keyword,
        inputs=gr.Textbox(label="Delete Keyword", placeholder="Enter keyword to delete here..."),
        outputs="text",
        title="Delete Keyword",
        description="Delete a keyword from the database.",
        allow_flagging="never"
    )

    keyword_tab = gr.TabbedInterface(
        [keyword_add_interface, keyword_delete_interface],
        ["Add Keywords", "Delete Keywords"]
    )

    # Combine interfaces into a tabbed interface
    tabbed_interface = gr.TabbedInterface([iface, search_tab, export_tab, keyword_tab],
                                          ["Transcription + Summarization", "Search", "Export", "Keywords"])

    # Launch the interface
    server_port_variable = 7860
    if server_mode:
        tabbed_interface.launch(share=True, server_port=server_port_variable, server_name="http://0.0.0.0")
    elif share_public:
        tabbed_interface.launch(share=True,)
    else:
        tabbed_interface.launch(share=False,)


#
#
#######################################################################################################################


#######################################################################################################################
# Prompt Sample Box
#

# Sample data
prompts_category_1 = [
    "What are the key points discussed in the video?",
    "Summarize the main arguments made by the speaker.",
    "Describe the conclusions of the study presented."
]

prompts_category_2 = [
    "How does the proposed solution address the problem?",
    "What are the implications of the findings?",
    "Can you explain the theory behind the observed phenomenon?"
]

all_prompts = prompts_category_1 + prompts_category_2


# Search function
def search_prompts(query):
    filtered_prompts = [prompt for prompt in all_prompts if query.lower() in prompt.lower()]
    return "\n".join(filtered_prompts)


# Handle prompt selection
def handle_prompt_selection(prompt):
    return f"You selected: {prompt}"


#
#
#######################################################################################################################


#######################################################################################################################
# Local LLM Setup / Running
#

# Download latest llamafile from Github
    # Example usage
    #repo = "Mozilla-Ocho/llamafile"
    #asset_name_prefix = "llamafile-"
    #output_filename = "llamafile"
    #download_latest_llamafile(repo, asset_name_prefix, output_filename)
def download_latest_llamafile(repo, asset_name_prefix, output_filename):
    # Globals
    global local_llm_model, llamafile
    # Check if the file already exists
    print("Checking for and downloading Llamafile it it doesn't already exist...")
    if os.path.exists(output_filename):
        time.sleep(1)
        print("Llamafile already exists. Skipping download.")
        logging.debug(f"{output_filename} already exists. Skipping download.")
        time.sleep(1)
        llamafile = output_filename
        llamafile_exists = True
    else:
        llamafile_exists = False

    if llamafile_exists == True:
        pass
    else:
        # Get the latest release information
        latest_release_url = f"https://api.github.com/repos/{repo}/releases/latest"
        response = requests.get(latest_release_url)
        if response.status_code != 200:
            raise Exception(f"Failed to fetch latest release info: {response.status_code}")

        latest_release_data = response.json()
        tag_name = latest_release_data['tag_name']

        # Get the release details using the tag name
        release_details_url = f"https://api.github.com/repos/{repo}/releases/tags/{tag_name}"
        response = requests.get(release_details_url)
        if response.status_code != 200:
            raise Exception(f"Failed to fetch release details for tag {tag_name}: {response.status_code}")

        release_data = response.json()
        assets = release_data.get('assets', [])

        # Find the asset with the specified prefix
        asset_url = None
        for asset in assets:
            if re.match(f"{asset_name_prefix}.*", asset['name']):
                asset_url = asset['browser_download_url']
                break

        if not asset_url:
            raise Exception(f"No asset found with prefix {asset_name_prefix}")

        # Download the asset
        response = requests.get(asset_url)
        if response.status_code != 200:
            raise Exception(f"Failed to download asset: {response.status_code}")

        print("Llamafile downloaded successfully.")
        logging.debug("Main: Llamafile downloaded successfully.")

        # Save the file
        with open(output_filename, 'wb') as file:
            file.write(response.content)

        logging.debug(f"Downloaded {output_filename} from {asset_url}")
        print(f"Downloaded {output_filename} from {asset_url}")

    # Check to see if the LLM already exists, and if not, download the LLM
    print("Checking for and downloading LLM from Huggingface if needed...")
    logging.debug("Main: Checking and downloading LLM from Huggingface if needed...")
    mistral_7b_instruct_v0_2_q8_0_llamafile = "mistral-7b-instruct-v0.2.Q8_0.llamafile"
    Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8 = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"
    Phi_3_mini_4k_instruct_Q8_0_llamafile = "Phi-3-mini-4k-instruct.Q8_0.llamafile"
    meta_Llama_3_8B_Instruct_Q8_0_llamafile = 'Meta-Llama-3-8B-Instruct.Q8_0.llamafile'

    available_models = []

    # Check for existence of model files
    if os.path.exists(mistral_7b_instruct_v0_2_q8_0_llamafile):
        available_models.append(mistral_7b_instruct_v0_2_q8_0_llamafile)
        print("Mistral-7B-Instruct-v0.2.Q8_0.llamafile already exists. Skipping download.")
    if os.path.exists(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8):
        available_models.append(Samantha_Mistral_Instruct_7B_Bulleted_Notes_Q8)
        print("Samantha-Mistral-Instruct-7B-Bulleted-Notes-Q8_0.gguf already exists. Skipping download.")
    if os.path.exists(Phi_3_mini_4k_instruct_Q8_0_llamafile):
        available_models.append(Phi_3_mini_4k_instruct_Q8_0_llamafile)
        print("Phi-3-mini-4k-instruct-Q8_0.llamafile already exists. Skipping download.")
    if os.path.exists(meta_Llama_3_8B_Instruct_Q8_0_llamafile):
        available_models.append(meta_Llama_3_8B_Instruct_Q8_0_llamafile)
        print("Meta-Llama-3-8B-Instruct.Q8_0.llamafile already exists. Skipping download.")

    # If no models are available, download the models
    if not available_models:
        user_choice_main = input("Would you like to download an LLM model? (Y/N): ")
    elif available_models:
        user_choice_main = input("\nSeems you already have a model available, would you like to download another LLM model? (Y/N): ")


    if user_choice_main.lower() == "y":
        logging.debug("Main: Checking and downloading LLM from Huggingface if needed...")
        time.sleep(1)
        dl_check = input("Final chance to back out, hit 'N'/'n' to cancel, or 'Y'/'y' to continue: ")
        if dl_check.lower == "n" or "2":
            exit()
        else:
            llm_choice = input("\nWhich LLM model would you like to download?\n\n1. Mistral-7B-Instruct-v0.2-GGUF \n2. Samantha-Mistral-Instruct-7B-Bulleted-Notes) \n3. Microsoft Phi3-Mini-128k 3.8B): \n\nPress '1', '2', or '3' to specify:\n\n ")
            while llm_choice != "1" and llm_choice != "2" and llm_choice != "3":
                print("Invalid choice. Please try again.")

            if llm_choice == "1":
                print("Downloading the Mistral-7B-Instruct-v0.2 LLM from Huggingface...")
                print("Gonna be a bit...")
                print("Like seriously, an 8GB file...(don't say I didn't warn you...)")
                time.sleep(2)
                mistral_7b_instruct_v0_2_q8_0_llamafile_sha256 = "1ee6114517d2f770425c880e5abc443da36b193c82abec8e2885dd7ce3b9bfa6"
                llm_download_model_hash = mistral_7b_instruct_v0_2_q8_0_llamafile_sha256
                llamafile_llm_url = "https://huggingface.co/Mozilla/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q8_0.llamafile?download=true"
                llamafile_llm_output_filename = "mistral-7b-instruct-v0.2.Q8_0.llamafile"
                download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash)
                local_llm_model = "mistral-7b-instruct-v0.2.Q8_0.llamafile"

            elif llm_choice == "2":
                print("Downloading the samantha-mistra-instruct-7b-bulleted-notes LLM from Huggingface...")
                print("Gonna be a bit...")
                print("Like seriously, an 8GB file...(don't say I didn't warn you...)")
                time.sleep(2)
                samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256 = "6334c1ab56c565afd86535271fab52b03e67a5e31376946bce7bf5c144e847e4"
                llm_download_model_hash = samantha_mistral_instruct_7b_bulleted_notes_q8_0_gguf_sha256
                llamafile_llm_output_filename = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"
                llamafile_llm_url = "https://huggingface.co/cognitivetech/samantha-mistral-instruct-7b-bulleted-notes-GGUF/resolve/main/samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf?download=true"
                download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash)
                local_llm_model = "samantha-mistral-instruct-7b-bulleted-notes.Q8_0.gguf"

            elif llm_choice == "3":
                print("Downloading MS Phi-3-4k-3.8B LLM from Huggingface...")
                print("Gonna be a bit...")
                print("Like seriously, a 4GB file...(don't say I didn't warn you...)")
                time.sleep(2)
                Phi_3_mini_4k_instruct_Q8_0_gguf_sha256 = "1b51fc72fda221dd7b4d3e84603db37fbb1ce53c17f2e7583b7026d181b8d20f"
                llm_download_model_hash = Phi_3_mini_4k_instruct_Q8_0_gguf_sha256
                llamafile_llm_output_filename = "Phi-3-mini-4k-instruct.Q8_0.llamafile"
                llamafile_llm_url = "https://huggingface.co/Mozilla/Phi-3-mini-4k-instruct-llamafile/resolve/main/Phi-3-mini-4k-instruct.Q8_0.llamafile?download=true"
                download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash)
                local_llm_model = "Phi-3-mini-4k-instruct-Q8_0.llamafile"

            elif llm_choice == "4":
                print("Downloading the Llama-3-8B LLM from Huggingface...")
                print("Gonna be a bit...")
                print("Like seriously, a 8GB file...(don't say I didn't warn you...)")
                time.sleep(2)
                meta_Llama_3_8B_Instruct_Q8_0_lamafile_sha256 = "406868a97f02f57183716c7e4441d427f223fdbc7fa42964ef10c4d60dd8ed37"
                llm_download_model_hash = meta_Llama_3_8B_Instruct_Q8_0_lamafile_sha256
                llamafile_llm_output_filename = "Meta-Llama-3-8B-Instruct.Q8_0.llamafile"
                llamafile_llm_url = "https://huggingface.co/Mozilla/Meta-Llama-3-8B-Instruct-llamafile/resolve/main/Meta-Llama-3-8B-Instruct.Q8_0.llamafile?download=true"
                download_file(llamafile_llm_url, llamafile_llm_output_filename, llm_download_model_hash)
                local_llm_model = "Meta-Llama-3-8B-Instruct.Q8_0.llamafile"

            else:
                print("Invalid choice. Please try again.")
    else:
        pass
    if available_models:
        print("\n\nAvailable models:")
        for idx, model in enumerate(available_models, start=1):
            print(f"{idx}. {model}")
        user_choice = input("\nWhich model would you like to use? Please enter the corresponding number: ")
        while not user_choice.isdigit() or int(user_choice) not in range(1, len(available_models) + 1):
            print("Invalid choice. Please try again.")
            user_choice = input("Which model would you like to use? Please enter the corresponding number: ")
        user_answer = available_models[int(user_choice) - 1]
        local_llm_model = user_answer
        print(f"You have chosen to use: {user_answer}")
    else:
        print("No models available/Found.")
        print("Please run the script again and select a model, or download one. Exiting...")
        exit()

    return llamafile, user_answer


def download_file(url, dest_path, expected_checksum=None, max_retries=3, delay=5):
    temp_path = dest_path + '.tmp'

    for attempt in range(max_retries):
        try:
            # Check if a partial download exists and get its size
            resume_header = {}
            if os.path.exists(temp_path):
                resume_header = {'Range': f'bytes={os.path.getsize(temp_path)}-'}

            response = requests.get(url, stream=True, headers=resume_header)
            response.raise_for_status()

            # Get the total file size from headers
            total_size = int(response.headers.get('content-length', 0))
            initial_pos = os.path.getsize(temp_path) if os.path.exists(temp_path) else 0

            mode = 'ab' if 'Range' in response.headers else 'wb'
            with open(temp_path, mode) as temp_file, tqdm(
                total=total_size, unit='B', unit_scale=True, desc=dest_path, initial=initial_pos, ascii=True
            ) as pbar:
                for chunk in response.iter_content(chunk_size=8192):
                    if chunk:  # filter out keep-alive new chunks
                        temp_file.write(chunk)
                        pbar.update(len(chunk))

            # Verify the checksum if provided
            if expected_checksum:
                if not verify_checksum(temp_path, expected_checksum):
                    os.remove(temp_path)
                    raise ValueError("Downloaded file's checksum does not match the expected checksum")

            # Move the file to the final destination
            os.rename(temp_path, dest_path)
            print("Download complete and verified!")
            return dest_path

        except Exception as e:
            print(f"Attempt {attempt + 1} failed: {e}")
            if attempt < max_retries - 1:
                print(f"Retrying in {delay} seconds...")
                time.sleep(delay)
            else:
                print("Max retries reached. Download failed.")
                raise


def verify_checksum(file_path, expected_checksum):
    sha256_hash = hashlib.sha256()
    with open(file_path, 'rb') as f:
        for byte_block in iter(lambda: f.read(4096), b''):
            sha256_hash.update(byte_block)
    return sha256_hash.hexdigest() == expected_checksum


# FIXME - Doesn't work...
# Function to close out llamafile process on script exit.
def cleanup_process():
    global process
    if process is not None:
        process.terminate()
        process = None
        print("Terminated the external process")

def signal_handler(sig, frame):
    logging.info('Signal handler called with signal: %s', sig)
    cleanup_process()
    sys.exit(0)


# Function to launch the llamafile in an external terminal window
# local_llm_model = Whatever the local model is
def local_llm_function():
    repo = "Mozilla-Ocho/llamafile"
    asset_name_prefix = "llamafile-"
    useros = os.name
    if useros == "nt":
        output_filename = "llamafile.exe"
    else:
        output_filename = "llamafile"
    print(
        "WARNING - Checking for existence of llamafile and HuggingFace model, downloading if needed...This could be a while")
    print("WARNING - and I mean a while. We're talking an 8 Gigabyte model here...")
    print("WARNING - Hope you're comfy. Or it's already downloaded.")
    time.sleep(6)
    logging.debug("Main: Checking and downloading Llamafile from Github if needed...")
    llamafile, user_answer = download_latest_llamafile(repo, asset_name_prefix, output_filename)
    logging.debug("Main: Llamafile downloaded successfully.")

    # Launch the llamafile in an external process with the specified argument
    arguments = ["-m", user_answer]
    try:
        logging.info("Main: Launching the LLM (llamafile) in an external terminal window...")
        if useros == "nt":
            launch_in_new_terminal_windows(llamafile, arguments)
        elif useros == "posix":
            launch_in_new_terminal_linux(llamafile, arguments)
        else:
            launch_in_new_terminal_mac(llamafile, arguments)
        # FIXME - pid doesn't exist in this context
        #logging.info(f"Main: Launched the {llamafile_path} with PID {process.pid}")
        atexit.register(cleanup_process)
    except Exception as e:
        logging.error(f"Failed to launch the process: {e}")
        print(f"Failed to launch the process: {e}")


def launch_in_new_terminal_windows(executable, args):
    command = f'start cmd /k "{executable} {" ".join(args)}"'
    process = subprocess.run(command, shell=True)

# FIXME
def launch_in_new_terminal_linux(executable, args):
    command = f'gnome-terminal -- {executable} {" ".join(args)}'
    process = subprocess.run(command, shell=True)

# FIXME
def launch_in_new_terminal_mac(executable, args):
    command = f'open -a Terminal.app {executable} {" ".join(args)}'
    process = subprocess.run(command, shell=True)

#
#
#######################################################################################################################


#######################################################################################################################
# Main()
#

def main(input_path, api_name=None, api_key=None,
         num_speakers=2,
         whisper_model="small.en",
         offset=0,
         vad_filter=False,
         download_video_flag=False,
         custom_prompt=None,
         overwrite=False,
         rolling_summarization=False,
         detail=0.01,
         keywords=None,
         chunk_summarization=False,
         chunk_duration=None,
         words_per_second=None,
         llm_model=None,
         time_based=False):

    global detail_level_number, summary, audio_file, detail_level, summary

    detail_level = detail

    print(f"Keywords: {keywords}")

    if input_path is None and args.user_interface:
        return []
    start_time = time.monotonic()
    paths = []  # Initialize paths as an empty list
    if os.path.isfile(input_path) and input_path.endswith('.txt'):
        logging.debug("MAIN: User passed in a text file, processing text file...")
        paths = read_paths_from_file(input_path)
    elif os.path.exists(input_path):
        logging.debug("MAIN: Local file path detected")
        paths = [input_path]
    elif (info_dict := get_youtube(input_path)) and 'entries' in info_dict:
        logging.debug("MAIN: YouTube playlist detected")
        print(
            "\n\nSorry, but playlists aren't currently supported. You can run the following command to generate a "
            "text file that you can then pass into this script though! (It may not work... playlist support seems "
            "spotty)" + """\n\n\tpython Get_Playlist_URLs.py <Youtube Playlist URL>\n\n\tThen,\n\n\tpython 
            diarizer.py <playlist text file name>\n\n""")
        return
    else:
        paths = [input_path]
    results = []

    for path in paths:
        try:
            if path.startswith('http'):
                logging.debug("MAIN: URL Detected")
                info_dict = get_youtube(path)
                json_file_path = None
                if info_dict:
                    logging.debug("MAIN: Creating path for video file...")
                    download_path = create_download_directory(info_dict['title'])
                    logging.debug("MAIN: Path created successfully\n MAIN: Now Downloading video from yt_dlp...")
                    try:
                        video_path = download_video(path, download_path, info_dict, download_video_flag)
                    except RuntimeError as e:
                        logging.error(f"Error downloading video: {str(e)}")
                        # FIXME - figure something out for handling this situation....
                        continue
                    logging.debug("MAIN: Video downloaded successfully")
                    logging.debug("MAIN: Converting video file to WAV...")
                    audio_file = convert_to_wav(video_path, offset)
                    logging.debug("MAIN: Audio file converted successfully")
            else:
                if os.path.exists(path):
                    logging.debug("MAIN: Local file path detected")
                    download_path, info_dict, audio_file = process_local_file(path)
                else:
                    logging.error(f"File does not exist: {path}")
                    continue

            if info_dict:
                logging.debug("MAIN: Creating transcription file from WAV")
                segments = speech_to_text(audio_file, whisper_model=whisper_model, vad_filter=vad_filter)
                transcription_result = {
                    'video_path': path,
                    'audio_file': audio_file,
                    'transcription': segments
                }
                results.append(transcription_result)
                logging.info(f"MAIN: Transcription complete: {audio_file}")

                # Perform rolling summarization based on API Name, detail level, and if an API key exists
                # Will remove the API key once rolling is added for llama.cpp

                # FIXME - Add input for model name for tabby and vllm

                if rolling_summarization:
                    logging.info("MAIN: Rolling Summarization")

                    # Extract the text from the segments
                    text = extract_text_from_segments(segments)

                    # Set the json_file_path
                    json_file_path = audio_file.replace('.wav', '.segments.json')

                    # Perform rolling summarization
                    summary = summarize_with_detail_openai(text, detail=detail_level, verbose=False)

                    # Handle the summarized output
                    if summary:
                        transcription_result['summary'] = summary
                        logging.info("MAIN: Rolling Summarization successful.")
                        save_summary_to_file(summary, json_file_path)
                    else:
                        logging.warning("MAIN: Rolling Summarization failed.")

                # FIXME - fucking mess of a function.
                # # Time-based Summarization
                # elif args.time_based:
                #     logging.info("MAIN: Time-based Summarization")
                #     global time_based_value
                #     time_based_value = args.time_based
                #     # Set the json_file_path
                #     json_file_path = audio_file.replace('.wav', '.segments.json')
                #
                #     # Perform time-based summarization
                #     summary = time_chunk_summarize(api_name, api_key, segments, args.time_based, custom_prompt,
                #                                    llm_model)
                #
                #     # Handle the summarized output
                #     if summary:
                #         transcription_result['summary'] = summary
                #         logging.info("MAIN: Time-based Summarization successful.")
                #         save_summary_to_file(summary, json_file_path)
                #     else:
                #         logging.warning("MAIN: Time-based Summarization failed.")

                # Perform chunk summarization - FIXME
                elif chunk_summarization:
                    logging.info("MAIN: Chunk Summarization")

                    # Set the json_file_path
                    json_file_path = audio_file.replace('.wav', '.segments.json')

                    # Perform chunk summarization
                    summary = summarize_chunks(api_name, api_key, segments, chunk_duration, words_per_second)

                    # Handle the summarized output
                    if summary:
                        transcription_result['summary'] = summary
                        logging.info("MAIN: Chunk Summarization successful.")
                        save_summary_to_file(summary, json_file_path)
                    else:
                        logging.warning("MAIN: Chunk Summarization failed.")
                # Perform summarization based on the specified API
                elif api_name:
                    logging.debug(f"MAIN: Summarization being performed by {api_name}")
                    json_file_path = audio_file.replace('.wav', '.segments.json')
                    if api_name.lower() == 'openai':
                        openai_api_key = api_key if api_key else config.get('API', 'openai_api_key',
                                                                            fallback=None)
                        try:
                            logging.debug(f"MAIN: trying to summarize with openAI")
                            summary = summarize_with_openai(openai_api_key, json_file_path, custom_prompt)
                        except requests.exceptions.ConnectionError:
                            requests.status_code = "Connection: "
                    elif api_name.lower() == "anthropic":
                        anthropic_api_key = api_key if api_key else config.get('API', 'anthropic_api_key',
                                                                               fallback=None)
                        try:
                            logging.debug(f"MAIN: Trying to summarize with anthropic")
                            summary = summarize_with_claude(anthropic_api_key, json_file_path, anthropic_model,
                                                            custom_prompt)
                        except requests.exceptions.ConnectionError:
                            requests.status_code = "Connection: "
                    elif api_name.lower() == "cohere":
                        cohere_api_key = os.getenv('COHERE_TOKEN').replace('"', '') if api_key is None else api_key
                        try:
                            logging.debug(f"MAIN: Trying to summarize with cohere")
                            summary = summarize_with_cohere(cohere_api_key, json_file_path, cohere_model, custom_prompt)
                        except requests.exceptions.ConnectionError:
                            requests.status_code = "Connection: "
                    elif api_name.lower() == "groq":
                        groq_api_key = api_key if api_key else config.get('API', 'groq_api_key', fallback=None)
                        try:
                            logging.debug(f"MAIN: Trying to summarize with Groq")
                            summary = summarize_with_groq(groq_api_key, json_file_path, groq_model, custom_prompt)
                        except requests.exceptions.ConnectionError:
                            requests.status_code = "Connection: "
                    elif api_name.lower() == "llama":
                        llama_token = api_key if api_key else config.get('API', 'llama_api_key', fallback=None)
                        llama_ip = llama_api_IP
                        try:
                            logging.debug(f"MAIN: Trying to summarize with Llama.cpp")
                            summary = summarize_with_llama(llama_ip, json_file_path, llama_token, custom_prompt)
                        except requests.exceptions.ConnectionError:
                            requests.status_code = "Connection: "
                    elif api_name.lower() == "kobold":
                        kobold_token = api_key if api_key else config.get('API', 'kobold_api_key', fallback=None)
                        kobold_ip = kobold_api_IP
                        try:
                            logging.debug(f"MAIN: Trying to summarize with kobold.cpp")
                            summary = summarize_with_kobold(kobold_ip, json_file_path, kobold_token, custom_prompt)
                        except requests.exceptions.ConnectionError:
                            requests.status_code = "Connection: "
                    elif api_name.lower() == "ooba":
                        ooba_token = api_key if api_key else config.get('API', 'ooba_api_key', fallback=None)
                        ooba_ip = ooba_api_IP
                        try:
                            logging.debug(f"MAIN: Trying to summarize with oobabooga")
                            summary = summarize_with_oobabooga(ooba_ip, json_file_path, ooba_token, custom_prompt)
                        except requests.exceptions.ConnectionError:
                            requests.status_code = "Connection: "
                    elif api_name.lower() == "tabbyapi":
                        tabbyapi_key = api_key if api_key else config.get('API', 'tabby_api_key', fallback=None)
                        tabbyapi_ip = tabby_api_IP
                        try:
                            logging.debug(f"MAIN: Trying to summarize with tabbyapi")
                            tabby_model = llm_model
                            summary = summarize_with_tabbyapi(tabby_api_key, tabby_api_IP, json_file_path, tabby_model,
                                                              custom_prompt)
                        except requests.exceptions.ConnectionError:
                            requests.status_code = "Connection: "
                    elif api_name.lower() == "vllm":
                        logging.debug(f"MAIN: Trying to summarize with VLLM")
                        summary = summarize_with_vllm(vllm_api_url, vllm_api_key, llm_model, json_file_path,
                                                      custom_prompt)
                    elif api_name.lower() == "local-llm":
                        logging.debug(f"MAIN: Trying to summarize with the local LLM, Mistral Instruct v0.2")
                        local_llm_url = "http://127.0.0.1:8080"
                        summary = summarize_with_local_llm(json_file_path, custom_prompt)
                    elif api_name.lower() == "huggingface":
                        huggingface_api_key = api_key if api_key else config.get('API', 'huggingface_api_key',
                                                                                 fallback=None)
                        try:
                            logging.debug(f"MAIN: Trying to summarize with huggingface")
                            summarize_with_huggingface(huggingface_api_key, json_file_path, custom_prompt)
                        except requests.exceptions.ConnectionError:
                            requests.status_code = "Connection: "

                    else:
                        logging.warning(f"Unsupported API: {api_name}")
                        summary = None

                    if summary:
                        transcription_result['summary'] = summary
                        logging.info(f"Summary generated using {api_name} API")
                        save_summary_to_file(summary, json_file_path)
                    elif final_summary:
                        logging.info(f"Rolling summary generated using {api_name} API")
                        logging.info(f"Final Rolling summary is {final_summary}\n\n")
                        save_summary_to_file(final_summary, json_file_path)
                    else:
                        logging.warning(f"Failed to generate summary using {api_name} API")
                else:
                    logging.info("MAIN: #2 - No API specified. Summarization will not be performed")

                # Add media to the database
                add_media_with_keywords(
                    url=path,
                    title=info_dict.get('title', 'Untitled'),
                    media_type='video',
                    content=' '.join([segment['text'] for segment in segments]),
                    keywords=','.join(keywords),
                    prompt=custom_prompt or 'No prompt provided',
                    summary=summary or 'No summary provided',
                    transcription_model=whisper_model,
                    author=info_dict.get('uploader', 'Unknown'),
                    ingestion_date=datetime.now().strftime('%Y-%m-%d')
                )

        except Exception as e:
            logging.error(f"Error processing {path}: {str(e)}")
            continue
        except Exception as e:
            logging.error(f"Error processing path: {path}")
            logging.error(str(e))
            continue
        # end_time = time.monotonic()
        # print("Total program execution time: " + timedelta(seconds=end_time - start_time))

    return results

def signal_handler(signal, frame):
    logging.info('Signal received, exiting...')
    sys.exit(0)

############################## MAIN ##############################
#
#

if __name__ == "__main__":
    # Register signal handlers
    signal.signal(signal.SIGINT, signal_handler)
    signal.signal(signal.SIGTERM, signal_handler)
    # Establish logging baseline
    logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
    parser = argparse.ArgumentParser(
        description='Transcribe and summarize videos.',
        epilog='''
Sample commands:
    1. Simple Sample command structure:
        summarize.py <path_to_video> -api openai -k tag_one tag_two tag_three

    2. Rolling Summary Sample command structure:
        summarize.py <path_to_video> -api openai -prompt "custom_prompt_goes_here-is-appended-after-transcription" -roll -detail 0.01 -k tag_one tag_two tag_three

    3. FULL Sample command structure:
        summarize.py <path_to_video> -api openai -ns 2 -wm small.en -off 0 -vad -log INFO -prompt "custom_prompt" -overwrite -roll -detail 0.01 -k tag_one tag_two tag_three

    4. Sample command structure for UI:
        summarize.py -gui -log DEBUG
        ''',
        formatter_class=argparse.RawTextHelpFormatter
    )
    parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?')
    parser.add_argument('-v', '--video', action='store_true', help='Download the video instead of just the audio')
    parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)')
    parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)')
    parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)')
    parser.add_argument('-wm', '--whisper_model', type=str, default='small.en',
                        help='Whisper model (default: small.en)')
    parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)')
    parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter')
    parser.add_argument('-log', '--log_level', type=str, default='INFO',
                        choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)')
    parser.add_argument('-gui', '--user_interface', action='store_true', help="Launch the Gradio user interface")
    parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode')
    parser.add_argument('-prompt', '--custom_prompt', type=str,
                        help='Pass in a custom prompt to be used in place of the existing one.\n (Probably should just '
                             'modify the script itself...)')
    parser.add_argument('-overwrite', '--overwrite', action='store_true', help='Overwrite existing files')
    parser.add_argument('-roll', '--rolling_summarization', action='store_true', help='Enable rolling summarization')
    parser.add_argument('-detail', '--detail_level', type=float, help='Mandatory if rolling summarization is enabled, '
                                                                      'defines the chunk  size.\n Default is 0.01(lots '
                                                                      'of chunks) -> 1.00 (few chunks)\n Currently '
                                                                      'only OpenAI works. ',
                        default=0.01, )
    # FIXME - This or time based...
    parser.add_argument('--chunk_duration', type=int, default=DEFAULT_CHUNK_DURATION,
                        help='Duration of each chunk in seconds')
    # FIXME - This or chunk_duration.... -> Maybe both???
    parser.add_argument('-time', '--time_based', type=int,
                        help='Enable time-based summarization and specify the chunk duration in seconds (minimum 60 seconds, increments of 30 seconds)')
    parser.add_argument('-model', '--llm_model', type=str, default='',
                        help='Model to use for LLM summarization (only used for vLLM/TabbyAPI)')
    parser.add_argument('-k', '--keywords', nargs='+', default=['cli_ingest_no_tag'],
                        help='Keywords for tagging the media, can use multiple separated by spaces (default: cli_ingest_no_tag)')
    parser.add_argument('--log_file', type=str, help='Where to save logfile (non-default)')
    parser.add_argument('--local_llm', action='store_true', help="Use a local LLM from the script(Downloads llamafile from github and 'mistral-7b-instruct-v0.2.Q8' - 8GB model from Huggingface)")
    parser.add_argument('--server_mode', action='store_true', help='Run in server mode (This exposes the GUI/Server to the network)')
    parser.add_argument('--share_public', type=int, default=7860, help="This will use Gradio's built-in ngrok tunneling to share the server publicly on the internet. Specify the port to use (default: 7860)")
    parser.add_argument('--port', type=int, default=7860, help='Port to run the server on')
    # parser.add_argument('-o', '--output_path', type=str, help='Path to save the output file')

    args = parser.parse_args()
    share_public = args.share_public
    server_mode = args.server_mode
    server_port = args.port

    ########## Logging setup
    logger = logging.getLogger()
    logger.setLevel(getattr(logging, args.log_level))

    # Create console handler
    console_handler = logging.StreamHandler()
    console_handler.setLevel(getattr(logging, args.log_level))
    console_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
    console_handler.setFormatter(console_formatter)
    logger.addHandler(console_handler)

    if args.log_file:
        # Create file handler
        file_handler = logging.FileHandler(args.log_file)
        file_handler.setLevel(getattr(logging, args.log_level))
        file_formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
        file_handler.setFormatter(file_formatter)
        logger.addHandler(file_handler)
        logger.info(f"Log file created at: {args.log_file}")

    ########## Custom Prompt setup
    custom_prompt = args.custom_prompt

    if custom_prompt is None or custom_prompt == "":
        logging.debug("No custom prompt defined, will use default")
        args.custom_prompt = ("\n\nabove is the transcript of a video "
                              "Please read through the transcript carefully. Identify the main topics that are "
                              "discussed over the course of the transcript. Then, summarize the key points about each "
                              "main topic in a concise bullet point. The bullet points should cover the key "
                              "information conveyed about each topic in the video, but should be much shorter than "
                              "the full transcript. Please output your bullet point summary inside <bulletpoints> "
                              "tags.")
        custom_prompt = args.custom_prompt
        print("No custom prompt defined, will use default")
    else:
        logging.debug(f"Custom prompt defined, will use \n\nf{custom_prompt} \n\nas the prompt")
        print(f"Custom Prompt has been defined. Custom prompt: \n\n {args.custom_prompt}")

    # Check if the user wants to use the local LLM from the script
    local_llm = args.local_llm
    logging.info(f'Local LLM flag: {local_llm}')

    if args.user_interface:
#        if local_llm:
#            local_llm_function()
#            time.sleep(3)
#            webbrowser.open_new_tab('http://127.0.0.1:7860')
        launch_ui(demo_mode=False)
    else:
        if not args.input_path:
            parser.print_help()
            sys.exit(1)

        logging.info('Starting the transcription and summarization process.')
        logging.info(f'Input path: {args.input_path}')
        logging.info(f'API Name: {args.api_name}')
        logging.info(f'Number of speakers: {args.num_speakers}')
        logging.info(f'Whisper model: {args.whisper_model}')
        logging.info(f'Offset: {args.offset}')
        logging.info(f'VAD filter: {args.vad_filter}')
        logging.info(f'Log Level: {args.log_level}')
        logging.info(f'Demo Mode: {args.demo_mode}')
        logging.info(f'Custom Prompt: {args.custom_prompt}')
        logging.info(f'Overwrite: {args.overwrite}')
        logging.info(f'Rolling Summarization: {args.rolling_summarization}')
        logging.info(f'User Interface: {args.user_interface}')
        logging.info(f'Video Download: {args.video}')
        # logging.info(f'Save File location: {args.output_path}')
        # logging.info(f'Log File location: {args.log_file}')

        # Get all API keys from the config
        api_keys = {key: value for key, value in config.items('API') if key.endswith('_api_key')}

        api_name = args.api_name

        # Rolling Summarization will only be performed if an API is specified and the API key is available
        # and the rolling summarization flag is set
        #
        summary = None  # Initialize to ensure it's always defined
        if args.detail_level == None:
            args.detail_level = 0.01
        if args.api_name and args.rolling_summarization and any(
                key.startswith(args.api_name) and value is not None for key, value in api_keys.items()):
            logging.info(f'MAIN: API used: {args.api_name}')
            logging.info('MAIN: Rolling Summarization will be performed.')

        elif args.api_name:
            logging.info(f'MAIN: API used: {args.api_name}')
            logging.info('MAIN: Summarization (not rolling) will be performed.')

        else:
            logging.info('No API specified. Summarization will not be performed.')

        logging.debug("Platform check being performed...")
        platform_check()
        logging.debug("CUDA check being performed...")
        cuda_check()
        logging.debug("ffmpeg check being performed...")
        check_ffmpeg()

        llm_model = args.llm_model or None


        try:
            results = main(args.input_path, api_name=args.api_name,
                           api_key=args.api_key,
                           num_speakers=args.num_speakers,
                           whisper_model=args.whisper_model,
                           offset=args.offset,
                           vad_filter=args.vad_filter,
                           download_video_flag=args.video,
                           custom_prompt=args.custom_prompt,
                           overwrite=args.overwrite,
                           rolling_summarization=args.rolling_summarization,
                           detail=args.detail_level,
                           keywords=args.keywords,
                           chunk_summarization=False,
                           chunk_duration=None,
                           words_per_second=None,
                           llm_model=args.llm_model,
                           time_based=args.time_based)

            logging.info('Transcription process completed.')
            atexit.register(cleanup_process)
        except Exception as e:
            logging.error('An error occurred during the transcription process.')
            logging.error(str(e))
            sys.exit(1)

        finally:
            cleanup_process()