Spaces:
Running
on
T4
Running
on
T4
File size: 27,845 Bytes
4b30d84 1e66485 bc84695 4b30d84 70a03b7 6e97454 4b30d84 1e66485 4b30d84 77a9bc5 da043f2 4b30d84 06905b7 a7a1fa6 4b30d84 6e97454 4b30d84 6e97454 4b30d84 e1fa56f 4b30d84 6e97454 4b30d84 6e97454 4b30d84 6e97454 4b30d84 6e97454 4b30d84 ebb4814 4b30d84 6e97454 17146d5 6e97454 ebb4814 28c56c2 ebb4814 6e97454 28c56c2 6e97454 4b30d84 1e66485 28c56c2 1e66485 3c18f07 28c56c2 3c18f07 ebb4814 28c56c2 ebb4814 28c56c2 e1fa56f 28c56c2 ebb4814 28c56c2 ebb4814 28c56c2 ebb4814 8902214 ebb4814 1e66485 e1fa56f 4b30d84 1e66485 8902214 1e66485 4b30d84 8902214 4b30d84 1e66485 4b30d84 1e66485 8902214 6e97454 b4d3beb 6e97454 4b30d84 8902214 4b30d84 1e66485 4b30d84 1db71fe 1e66485 6e97454 1e66485 8902214 1e66485 4b30d84 1e66485 8902214 4b30d84 49ba457 4b30d84 1e66485 25d37d8 4b30d84 9d68af7 4b30d84 6e97454 fd46938 4b30d84 bc84695 4b30d84 70a03b7 4b30d84 6e97454 4b30d84 fd46938 6e97454 4b30d84 6e97454 4b30d84 6e97454 4b30d84 6e97454 4b30d84 6e97454 4b30d84 3f8aed1 4b30d84 6e97454 4b30d84 6e97454 4b30d84 c0beaa0 4b30d84 1e66485 4b30d84 c1d5b88 4b30d84 c1d5b88 4b30d84 97a8826 4b30d84 97a8826 4b30d84 97a8826 4b30d84 6e97454 4b30d84 6e97454 4b30d84 6e97454 4b30d84 6e97454 4b30d84 6e97454 97a8826 4b30d84 6e97454 97a8826 4b30d84 6e97454 4b30d84 1e66485 4b30d84 97a8826 4b30d84 6e97454 97a8826 4b30d84 97a8826 4b30d84 97a8826 4b30d84 6e97454 97a8826 6e97454 4b30d84 1e66485 6e97454 97a8826 6e97454 4b30d84 6e97454 4b30d84 97a8826 4b30d84 97a8826 4b30d84 97a8826 4b30d84 6e97454 4b30d84 1e66485 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 |
import random
import tempfile
import time
import gradio as gr
import numpy as np
import torch
import math
import re
from gradio import inputs
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNet2DConditionModel,
)
from modules.model import (
CrossAttnProcessor,
StableDiffusionPipeline,
)
from torchvision import transforms
from transformers import CLIPTokenizer, CLIPTextModel
from PIL import Image
from pathlib import Path
from safetensors.torch import load_file
import modules.safe as _
from modules.lora import LoRANetwork
models = [
("AbyssOrangeMix2", "Korakoe/AbyssOrangeMix2-HF", 2),
("Pastal Mix", "andite/pastel-mix", 2),
("Basil Mix", "nuigurumi/basil_mix", 2)
]
keep_vram = ["Korakoe/AbyssOrangeMix2-HF", "andite/pastel-mix"]
base_name, base_model, clip_skip = models[0]
samplers_k_diffusion = [
("Euler a", "sample_euler_ancestral", {}),
("Euler", "sample_euler", {}),
("LMS", "sample_lms", {}),
("Heun", "sample_heun", {}),
("DPM2", "sample_dpm_2", {"discard_next_to_last_sigma": True}),
("DPM2 a", "sample_dpm_2_ancestral", {"discard_next_to_last_sigma": True}),
("DPM++ 2S a", "sample_dpmpp_2s_ancestral", {}),
("DPM++ 2M", "sample_dpmpp_2m", {}),
("DPM++ SDE", "sample_dpmpp_sde", {}),
("LMS Karras", "sample_lms", {"scheduler": "karras"}),
("DPM2 Karras", "sample_dpm_2", {"scheduler": "karras", "discard_next_to_last_sigma": True}),
("DPM2 a Karras", "sample_dpm_2_ancestral", {"scheduler": "karras", "discard_next_to_last_sigma": True}),
("DPM++ 2S a Karras", "sample_dpmpp_2s_ancestral", {"scheduler": "karras"}),
("DPM++ 2M Karras", "sample_dpmpp_2m", {"scheduler": "karras"}),
("DPM++ SDE Karras", "sample_dpmpp_sde", {"scheduler": "karras"}),
]
# samplers_diffusers = [
# ("DDIMScheduler", "diffusers.schedulers.DDIMScheduler", {})
# ("DDPMScheduler", "diffusers.schedulers.DDPMScheduler", {})
# ("DEISMultistepScheduler", "diffusers.schedulers.DEISMultistepScheduler", {})
# ]
start_time = time.time()
timeout = 90
scheduler = DDIMScheduler.from_pretrained(
base_model,
subfolder="scheduler",
)
vae = AutoencoderKL.from_pretrained(
"stabilityai/sd-vae-ft-ema",
torch_dtype=torch.float16
)
text_encoder = CLIPTextModel.from_pretrained(
base_model,
subfolder="text_encoder",
torch_dtype=torch.float16,
)
tokenizer = CLIPTokenizer.from_pretrained(
base_model,
subfolder="tokenizer",
torch_dtype=torch.float16,
)
unet = UNet2DConditionModel.from_pretrained(
base_model,
subfolder="unet",
torch_dtype=torch.float16,
)
pipe = StableDiffusionPipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
vae=vae,
scheduler=scheduler,
)
unet.set_attn_processor(CrossAttnProcessor)
pipe.setup_text_encoder(clip_skip, text_encoder)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
def get_model_list():
return models
te_cache = {
base_model: text_encoder
}
unet_cache = {
base_model: unet
}
lora_cache = {
base_model: LoRANetwork(text_encoder, unet)
}
te_base_weight_length = text_encoder.get_input_embeddings().weight.data.shape[0]
original_prepare_for_tokenization = tokenizer.prepare_for_tokenization
current_model = base_model
def setup_model(name, lora_state=None, lora_scale=1.0):
global pipe, current_model
keys = [k[0] for k in models]
model = models[keys.index(name)][1]
if model not in unet_cache:
unet = UNet2DConditionModel.from_pretrained(model, subfolder="unet", torch_dtype=torch.float16)
text_encoder = CLIPTextModel.from_pretrained(model, subfolder="text_encoder", torch_dtype=torch.float16)
unet_cache[model] = unet
te_cache[model] = text_encoder
lora_cache[model] = LoRANetwork(text_encoder, unet)
if current_model != model:
if current_model not in keep_vram:
# offload current model
unet_cache[current_model].to("cpu")
te_cache[current_model].to("cpu")
lora_cache[current_model].to("cpu")
current_model = model
local_te, local_unet, local_lora, = te_cache[model], unet_cache[model], lora_cache[model]
local_unet.set_attn_processor(CrossAttnProcessor())
local_lora.reset()
clip_skip = models[keys.index(name)][2]
if torch.cuda.is_available():
local_unet.to("cuda")
local_te.to("cuda")
if lora_state is not None and lora_state != "":
local_lora.load(lora_state, lora_scale)
local_lora.to(local_unet.device, dtype=local_unet.dtype)
pipe.text_encoder, pipe.unet = local_te, local_unet
pipe.setup_unet(local_unet)
pipe.tokenizer.prepare_for_tokenization = original_prepare_for_tokenization
pipe.tokenizer.added_tokens_encoder = {}
pipe.tokenizer.added_tokens_decoder = {}
pipe.setup_text_encoder(clip_skip, local_te)
return pipe
def error_str(error, title="Error"):
return (
f"""#### {title}
{error}"""
if error
else ""
)
def make_token_names(embs):
all_tokens = []
for name, vec in embs.items():
tokens = [f'emb-{name}-{i}' for i in range(len(vec))]
all_tokens.append(tokens)
return all_tokens
def setup_tokenizer(tokenizer, embs):
reg_match = [re.compile(fr"(?:^|(?<=\s|,)){k}(?=,|\s|$)") for k in embs.keys()]
clip_keywords = [' '.join(s) for s in make_token_names(embs)]
def parse_prompt(prompt: str):
for m, v in zip(reg_match, clip_keywords):
prompt = m.sub(v, prompt)
return prompt
def prepare_for_tokenization(self, text: str, is_split_into_words: bool = False, **kwargs):
text = parse_prompt(text)
r = original_prepare_for_tokenization(text, is_split_into_words, **kwargs)
return r
tokenizer.prepare_for_tokenization = prepare_for_tokenization.__get__(tokenizer, CLIPTokenizer)
return [t for sublist in make_token_names(embs) for t in sublist]
def convert_size(size_bytes):
if size_bytes == 0:
return "0B"
size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
i = int(math.floor(math.log(size_bytes, 1024)))
p = math.pow(1024, i)
s = round(size_bytes / p, 2)
return "%s %s" % (s, size_name[i])
def inference(
prompt,
guidance,
steps,
width=512,
height=512,
seed=0,
neg_prompt="",
state=None,
g_strength=0.4,
img_input=None,
i2i_scale=0.5,
hr_enabled=False,
hr_method="Latent",
hr_scale=1.5,
hr_denoise=0.8,
sampler="DPM++ 2M Karras",
embs=None,
model=None,
lora_state=None,
lora_scale=None,
):
if seed is None or seed == 0:
seed = random.randint(0, 2147483647)
pipe = setup_model(model, lora_state, lora_scale)
generator = torch.Generator("cuda").manual_seed(int(seed))
start_time = time.time()
sampler_name, sampler_opt = None, None
for label, funcname, options in samplers_k_diffusion:
if label == sampler:
sampler_name, sampler_opt = funcname, options
tokenizer, text_encoder = pipe.tokenizer, pipe.text_encoder
if embs is not None and len(embs) > 0:
ti_embs = {}
for name, file in embs.items():
if str(file).endswith(".pt"):
loaded_learned_embeds = torch.load(file, map_location="cpu")
else:
loaded_learned_embeds = load_file(file, device="cpu")
loaded_learned_embeds = loaded_learned_embeds["string_to_param"]["*"] if "string_to_param" in loaded_learned_embed else loaded_learned_embed
ti_embs[name] = loaded_learned_embeds
if len(ti_embs) > 0:
tokens = setup_tokenizer(tokenizer, ti_embs)
added_tokens = tokenizer.add_tokens(tokens)
delta_weight = torch.cat([val for val in ti_embs.values()], dim=0)
assert added_tokens == delta_weight.shape[0]
text_encoder.resize_token_embeddings(len(tokenizer))
token_embeds = text_encoder.get_input_embeddings().weight.data
token_embeds[-delta_weight.shape[0]:] = delta_weight
config = {
"negative_prompt": neg_prompt,
"num_inference_steps": int(steps),
"guidance_scale": guidance,
"generator": generator,
"sampler_name": sampler_name,
"sampler_opt": sampler_opt,
"pww_state": state,
"pww_attn_weight": g_strength,
"start_time": start_time,
"timeout": timeout,
}
if img_input is not None:
ratio = min(height / img_input.height, width / img_input.width)
img_input = img_input.resize(
(int(img_input.width * ratio), int(img_input.height * ratio)), Image.LANCZOS
)
result = pipe.img2img(prompt, image=img_input, strength=i2i_scale, **config)
elif hr_enabled:
result = pipe.txt2img(
prompt,
width=width,
height=height,
upscale=True,
upscale_x=hr_scale,
upscale_denoising_strength=hr_denoise,
**config,
**latent_upscale_modes[hr_method],
)
else:
result = pipe.txt2img(prompt, width=width, height=height, **config)
end_time = time.time()
vram_free, vram_total = torch.cuda.mem_get_info()
print(f"done: model={model}, res={width}x{height}, step={steps}, time={round(end_time-start_time, 2)}s, vram_alloc={convert_size(vram_total-vram_free)}/{convert_size(vram_total)}")
return gr.Image.update(result[0][0], label=f"Initial Seed: {seed}")
color_list = []
def get_color(n):
for _ in range(n - len(color_list)):
color_list.append(tuple(np.random.random(size=3) * 256))
return color_list
def create_mixed_img(current, state, w=512, h=512):
w, h = int(w), int(h)
image_np = np.full([h, w, 4], 255)
if state is None:
state = {}
colors = get_color(len(state))
idx = 0
for key, item in state.items():
if item["map"] is not None:
m = item["map"] < 255
alpha = 150
if current == key:
alpha = 200
image_np[m] = colors[idx] + (alpha,)
idx += 1
return image_np
# width.change(apply_new_res, inputs=[width, height, global_stats], outputs=[global_stats, sp, rendered])
def apply_new_res(w, h, state):
w, h = int(w), int(h)
for key, item in state.items():
if item["map"] is not None:
item["map"] = resize(item["map"], w, h)
update_img = gr.Image.update(value=create_mixed_img("", state, w, h))
return state, update_img
def detect_text(text, state, width, height):
if text is None or text == "":
return None, None, gr.Radio.update(value=None), None
t = text.split(",")
new_state = {}
for item in t:
item = item.strip()
if item == "":
continue
if state is not None and item in state:
new_state[item] = {
"map": state[item]["map"],
"weight": state[item]["weight"],
"mask_outsides": state[item]["mask_outsides"],
}
else:
new_state[item] = {
"map": None,
"weight": 0.5,
"mask_outsides": False
}
update = gr.Radio.update(choices=[key for key in new_state.keys()], value=None)
update_img = gr.update(value=create_mixed_img("", new_state, width, height))
update_sketch = gr.update(value=None, interactive=False)
return new_state, update_sketch, update, update_img
def resize(img, w, h):
trs = transforms.Compose(
[
transforms.ToPILImage(),
transforms.Resize(min(h, w)),
transforms.CenterCrop((h, w)),
]
)
result = np.array(trs(img), dtype=np.uint8)
return result
def switch_canvas(entry, state, width, height):
if entry == None:
return None, 0.5, False, create_mixed_img("", state, width, height)
return (
gr.update(value=None, interactive=True),
gr.update(value=state[entry]["weight"] if entry in state else 0.5),
gr.update(value=state[entry]["mask_outsides"] if entry in state else False),
create_mixed_img(entry, state, width, height),
)
def apply_canvas(selected, draw, state, w, h):
if selected in state:
w, h = int(w), int(h)
state[selected]["map"] = resize(draw, w, h)
return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))
def apply_weight(selected, weight, state):
if selected in state:
state[selected]["weight"] = weight
return state
def apply_option(selected, mask, state):
if selected in state:
state[selected]["mask_outsides"] = mask
return state
# sp2, radio, width, height, global_stats
def apply_image(image, selected, w, h, strgength, mask, state):
if selected in state:
state[selected] = {
"map": resize(image, w, h),
"weight": strgength,
"mask_outsides": mask
}
return state, gr.Image.update(value=create_mixed_img(selected, state, w, h))
# [ti_state, lora_state, ti_vals, lora_vals, uploads]
def add_net(files, ti_state, lora_state):
if files is None:
return ti_state, "", lora_state, None
for file in files:
item = Path(file.name)
stripedname = str(item.stem).strip()
if item.suffix == ".pt":
state_dict = torch.load(file.name, map_location="cpu")
else:
state_dict = load_file(file.name, device="cpu")
if any("lora" in k for k in state_dict.keys()):
lora_state = file.name
else:
ti_state[stripedname] = file.name
return (
ti_state,
lora_state,
gr.Text.update(f"{[key for key in ti_state.keys()]}"),
gr.Text.update(f"{lora_state}"),
gr.Files.update(value=None),
)
# [ti_state, lora_state, ti_vals, lora_vals, uploads]
def clean_states(ti_state, lora_state):
return (
dict(),
None,
gr.Text.update(f""),
gr.Text.update(f""),
gr.File.update(value=None),
)
latent_upscale_modes = {
"Latent": {"upscale_method": "bilinear", "upscale_antialias": False},
"Latent (antialiased)": {"upscale_method": "bilinear", "upscale_antialias": True},
"Latent (bicubic)": {"upscale_method": "bicubic", "upscale_antialias": False},
"Latent (bicubic antialiased)": {
"upscale_method": "bicubic",
"upscale_antialias": True,
},
"Latent (nearest)": {"upscale_method": "nearest", "upscale_antialias": False},
"Latent (nearest-exact)": {
"upscale_method": "nearest-exact",
"upscale_antialias": False,
},
}
css = """
.finetuned-diffusion-div div{
display:inline-flex;
align-items:center;
gap:.8rem;
font-size:1.75rem;
padding-top:2rem;
}
.finetuned-diffusion-div div h1{
font-weight:900;
margin-bottom:7px
}
.finetuned-diffusion-div p{
margin-bottom:10px;
font-size:94%
}
.box {
float: left;
height: 20px;
width: 20px;
margin-bottom: 15px;
border: 1px solid black;
clear: both;
}
a{
text-decoration:underline
}
.tabs{
margin-top:0;
margin-bottom:0
}
#gallery{
min-height:20rem
}
.no-border {
border: none !important;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="finetuned-diffusion-div">
<div>
<h1>Demo for diffusion models</h1>
</div>
<p>Hso @ nyanko.sketch2img.gradio</p>
</div>
"""
)
global_stats = gr.State(value={})
with gr.Row():
with gr.Column(scale=55):
model = gr.Dropdown(
choices=[k[0] for k in get_model_list()],
label="Model",
value=base_name,
)
image_out = gr.Image(height=512)
# gallery = gr.Gallery(
# label="Generated images", show_label=False, elem_id="gallery"
# ).style(grid=[1], height="auto")
with gr.Column(scale=45):
with gr.Group():
with gr.Row():
with gr.Column(scale=70):
prompt = gr.Textbox(
label="Prompt",
value="loli cat girl, blue eyes, flat chest, solo, long messy silver hair, blue capelet, cat ears, cat tail, upper body",
show_label=True,
max_lines=4,
placeholder="Enter prompt.",
)
neg_prompt = gr.Textbox(
label="Negative Prompt",
value="bad quality, low quality, jpeg artifact, cropped",
show_label=True,
max_lines=4,
placeholder="Enter negative prompt.",
)
generate = gr.Button(value="Generate").style(
rounded=(False, True, True, False)
)
with gr.Tab("Options"):
with gr.Group():
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
with gr.Row():
guidance = gr.Slider(
label="Guidance scale", value=7.5, maximum=15
)
steps = gr.Slider(
label="Steps", value=25, minimum=2, maximum=50, step=1
)
with gr.Row():
width = gr.Slider(
label="Width", value=512, minimum=64, maximum=1024, step=64
)
height = gr.Slider(
label="Height", value=512, minimum=64, maximum=1024, step=64
)
sampler = gr.Dropdown(
value="DPM++ 2M Karras",
label="Sampler",
choices=[s[0] for s in samplers_k_diffusion],
)
seed = gr.Number(label="Seed (0 = random)", value=0)
with gr.Tab("Image to image"):
with gr.Group():
inf_image = gr.Image(
label="Image", height=256, tool="editor", type="pil"
)
inf_strength = gr.Slider(
label="Transformation strength",
minimum=0,
maximum=1,
step=0.01,
value=0.5,
)
def res_cap(g, w, h, x):
if g:
return f"Enable upscaler: {w}x{h} to {int(w*x)}x{int(h*x)}"
else:
return "Enable upscaler"
with gr.Tab("Hires fix"):
with gr.Group():
hr_enabled = gr.Checkbox(label="Enable upscaler", value=False)
hr_method = gr.Dropdown(
[key for key in latent_upscale_modes.keys()],
value="Latent",
label="Upscale method",
)
hr_scale = gr.Slider(
label="Upscale factor",
minimum=1.0,
maximum=2.0,
step=0.1,
value=1.5,
)
hr_denoise = gr.Slider(
label="Denoising strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
)
hr_scale.change(
lambda g, x, w, h: gr.Checkbox.update(
label=res_cap(g, w, h, x)
),
inputs=[hr_enabled, hr_scale, width, height],
outputs=hr_enabled,
queue=False,
)
hr_enabled.change(
lambda g, x, w, h: gr.Checkbox.update(
label=res_cap(g, w, h, x)
),
inputs=[hr_enabled, hr_scale, width, height],
outputs=hr_enabled,
queue=False,
)
with gr.Tab("Embeddings/Loras"):
ti_state = gr.State(dict())
lora_state = gr.State()
with gr.Group():
with gr.Row():
with gr.Column(scale=90):
ti_vals = gr.Text(label="Loaded embeddings")
with gr.Row():
with gr.Column(scale=90):
lora_vals = gr.Text(label="Loaded loras")
with gr.Row():
uploads = gr.Files(label="Upload new embeddings/lora")
with gr.Column():
lora_scale = gr.Slider(
label="Lora scale",
minimum=0,
maximum=2,
step=0.01,
value=1.0,
)
btn = gr.Button(value="Upload")
btn_del = gr.Button(value="Reset")
btn.click(
add_net,
inputs=[uploads, ti_state, lora_state],
outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads],
queue=False,
)
btn_del.click(
clean_states,
inputs=[ti_state, lora_state],
outputs=[ti_state, lora_state, ti_vals, lora_vals, uploads],
queue=False,
)
# error_output = gr.Markdown()
gr.HTML(
f"""
<div class="finetuned-diffusion-div">
<div>
<h1>Paint with words</h1>
</div>
<p>
Will use the following formula: w = scale * token_weight_martix * log(1 + sigma) * max(qk).
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
rendered = gr.Image(
invert_colors=True,
source="canvas",
interactive=False,
image_mode="RGBA",
)
with gr.Column(scale=45):
with gr.Group():
with gr.Row():
with gr.Column(scale=70):
g_strength = gr.Slider(
label="Weight scaling",
minimum=0,
maximum=0.8,
step=0.01,
value=0.4,
)
text = gr.Textbox(
lines=2,
interactive=True,
label="Token to Draw: (Separate by comma)",
)
radio = gr.Radio([], label="Tokens")
sk_update = gr.Button(value="Update").style(
rounded=(False, True, True, False)
)
# g_strength.change(lambda b: gr.update(f"Scaled additional attn: $w = {b} \log (1 + \sigma) \std (Q^T K)$."), inputs=g_strength, outputs=[g_output])
with gr.Tab("SketchPad"):
sp = gr.Image(
image_mode="L",
tool="sketch",
source="canvas",
interactive=False,
)
mask_outsides = gr.Checkbox(
label="Mask other areas",
value=False
)
strength = gr.Slider(
label="Token strength",
minimum=0,
maximum=0.8,
step=0.01,
value=0.5,
)
sk_update.click(
detect_text,
inputs=[text, global_stats, width, height],
outputs=[global_stats, sp, radio, rendered],
queue=False,
)
radio.change(
switch_canvas,
inputs=[radio, global_stats, width, height],
outputs=[sp, strength, mask_outsides, rendered],
queue=False,
)
sp.edit(
apply_canvas,
inputs=[radio, sp, global_stats, width, height],
outputs=[global_stats, rendered],
queue=False,
)
strength.change(
apply_weight,
inputs=[radio, strength, global_stats],
outputs=[global_stats],
queue=False,
)
mask_outsides.change(
apply_option,
inputs=[radio, mask_outsides, global_stats],
outputs=[global_stats],
queue=False,
)
with gr.Tab("UploadFile"):
sp2 = gr.Image(
image_mode="L",
source="upload",
shape=(512, 512),
)
mask_outsides2 = gr.Checkbox(
label="Mask other areas",
value=False,
)
strength2 = gr.Slider(
label="Token strength",
minimum=0,
maximum=0.8,
step=0.01,
value=0.5,
)
apply_style = gr.Button(value="Apply")
apply_style.click(
apply_image,
inputs=[sp2, radio, width, height, strength2, mask_outsides2, global_stats],
outputs=[global_stats, rendered],
queue=False,
)
width.change(
apply_new_res,
inputs=[width, height, global_stats],
outputs=[global_stats, rendered],
queue=False,
)
height.change(
apply_new_res,
inputs=[width, height, global_stats],
outputs=[global_stats, rendered],
queue=False,
)
# color_stats = gr.State(value={})
# text.change(detect_color, inputs=[sp, text, color_stats], outputs=[color_stats, rendered])
# sp.change(detect_color, inputs=[sp, text, color_stats], outputs=[color_stats, rendered])
inputs = [
prompt,
guidance,
steps,
width,
height,
seed,
neg_prompt,
global_stats,
g_strength,
inf_image,
inf_strength,
hr_enabled,
hr_method,
hr_scale,
hr_denoise,
sampler,
ti_state,
model,
lora_state,
lora_scale,
]
outputs = [image_out]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
print(f"Space built in {time.time() - start_time:.2f} seconds")
# demo.launch(share=True)
demo.launch(enable_queue=True, server_name="0.0.0.0", server_port=7860)
|