Spaces:
Running
on
T4
Running
on
T4
chore: sync with upstream
Browse files- app.py +38 -24
- modules/lora.py +6 -4
- modules/model.py +7 -5
app.py
CHANGED
@@ -94,12 +94,17 @@ pipe = StableDiffusionPipeline(
|
|
94 |
)
|
95 |
|
96 |
unet.set_attn_processor(CrossAttnProcessor)
|
|
|
97 |
if torch.cuda.is_available():
|
98 |
pipe = pipe.to("cuda")
|
99 |
|
100 |
def get_model_list():
|
101 |
return models + alt_models
|
102 |
|
|
|
|
|
|
|
|
|
103 |
unet_cache = {
|
104 |
base_name: unet
|
105 |
}
|
@@ -108,35 +113,50 @@ lora_cache = {
|
|
108 |
base_name: LoRANetwork(text_encoder, unet)
|
109 |
}
|
110 |
|
111 |
-
def
|
112 |
-
|
113 |
-
|
|
|
114 |
if name not in unet_cache:
|
115 |
if name not in keys:
|
116 |
raise ValueError(name)
|
117 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
unet = UNet2DConditionModel.from_pretrained(
|
119 |
-
|
120 |
subfolder="unet",
|
121 |
torch_dtype=torch.float16,
|
122 |
)
|
123 |
-
|
|
|
|
|
|
|
|
|
124 |
unet_cache[name] = unet
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
clip_skip =
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
136 |
|
137 |
# precache on huggingface
|
138 |
for model in models:
|
139 |
-
|
140 |
|
141 |
def error_str(error, title="Error"):
|
142 |
return (
|
@@ -218,13 +238,7 @@ def inference(
|
|
218 |
restore_all()
|
219 |
generator = torch.Generator("cuda").manual_seed(int(seed))
|
220 |
|
221 |
-
|
222 |
-
pipe.set_clip_skip(clip_skip)
|
223 |
-
if lora_state is not None and lora_state != "":
|
224 |
-
local_lora.load(lora_state, lora_scale)
|
225 |
-
local_lora.to(local_unet.device, dtype=local_unet.dtype)
|
226 |
-
|
227 |
-
pipe.setup_unet(local_unet)
|
228 |
sampler_name, sampler_opt = None, None
|
229 |
for label, funcname, options in samplers_k_diffusion:
|
230 |
if label == sampler:
|
|
|
94 |
)
|
95 |
|
96 |
unet.set_attn_processor(CrossAttnProcessor)
|
97 |
+
pipe.setup_text_encoder(clip_skip, text_encoder)
|
98 |
if torch.cuda.is_available():
|
99 |
pipe = pipe.to("cuda")
|
100 |
|
101 |
def get_model_list():
|
102 |
return models + alt_models
|
103 |
|
104 |
+
te_cache = {
|
105 |
+
base_name: text_encoder
|
106 |
+
}
|
107 |
+
|
108 |
unet_cache = {
|
109 |
base_name: unet
|
110 |
}
|
|
|
113 |
base_name: LoRANetwork(text_encoder, unet)
|
114 |
}
|
115 |
|
116 |
+
def setup_model(name, lora_state=None, lora_scale=1.0):
|
117 |
+
global pipe
|
118 |
+
|
119 |
+
keys = [k[0] for k in models]
|
120 |
if name not in unet_cache:
|
121 |
if name not in keys:
|
122 |
raise ValueError(name)
|
123 |
else:
|
124 |
+
|
125 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
126 |
+
models[keys.index(name)][1],
|
127 |
+
subfolder="text_encoder",
|
128 |
+
torch_dtype=torch.float16,
|
129 |
+
)
|
130 |
unet = UNet2DConditionModel.from_pretrained(
|
131 |
+
models[keys.index(name)][1],
|
132 |
subfolder="unet",
|
133 |
torch_dtype=torch.float16,
|
134 |
)
|
135 |
+
|
136 |
+
if torch.cuda.is_available():
|
137 |
+
unet.to("cuda")
|
138 |
+
text_encoder.to("cuda")
|
139 |
+
|
140 |
unet_cache[name] = unet
|
141 |
+
te_cache[name] = text_encoder
|
142 |
+
lora_cache[name] = LoRANetwork(text_encoder, unet)
|
143 |
+
|
144 |
+
local_te, local_unet, local_lora, = te_cache[name], unet_cache[name], lora_cache[name]
|
145 |
+
local_unet.set_attn_processor(CrossAttnProcessor())
|
146 |
+
local_lora.reset()
|
147 |
+
clip_skip = models[keys.index(name)][2]
|
148 |
+
|
149 |
+
if lora_state is not None and lora_state != "":
|
150 |
+
local_lora.load(lora_state, lora_scale)
|
151 |
+
local_lora.to(local_unet.device, dtype=local_unet.dtype)
|
152 |
+
|
153 |
+
pipe.setup_unet(local_unet)
|
154 |
+
pipe.setup_text_encoder(clip_skip, local_te)
|
155 |
+
return pipe
|
156 |
|
157 |
# precache on huggingface
|
158 |
for model in models:
|
159 |
+
setup_model(model[0])
|
160 |
|
161 |
def error_str(error, title="Error"):
|
162 |
return (
|
|
|
238 |
restore_all()
|
239 |
generator = torch.Generator("cuda").manual_seed(int(seed))
|
240 |
|
241 |
+
setup_model(model, lora_state, lora_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
sampler_name, sampler_opt = None, None
|
243 |
for label, funcname, options in samplers_k_diffusion:
|
244 |
if label == sampler:
|
modules/lora.py
CHANGED
@@ -55,8 +55,9 @@ class LoRAModule(torch.nn.Module):
|
|
55 |
self.org_module = org_module # remove in applying
|
56 |
self.enable = False
|
57 |
|
58 |
-
def resize(self, rank, alpha):
|
59 |
self.alpha = torch.tensor(alpha)
|
|
|
60 |
self.scale = alpha / rank
|
61 |
if self.lora_down.__class__.__name__ == "Conv2d":
|
62 |
in_dim = self.lora_down.in_channels
|
@@ -172,10 +173,11 @@ class LoRANetwork(torch.nn.Module):
|
|
172 |
weights_to_modify += self.unet_loras
|
173 |
|
174 |
for lora in self.text_encoder_loras + self.unet_loras:
|
175 |
-
lora.resize(network_dim, network_alpha)
|
176 |
if lora in weights_to_modify:
|
177 |
lora.enable = True
|
178 |
|
179 |
info = self.load_state_dict(weights, False)
|
180 |
-
|
181 |
-
|
|
|
|
55 |
self.org_module = org_module # remove in applying
|
56 |
self.enable = False
|
57 |
|
58 |
+
def resize(self, rank, alpha, multiplier):
|
59 |
self.alpha = torch.tensor(alpha)
|
60 |
+
self.multiplier = multiplier
|
61 |
self.scale = alpha / rank
|
62 |
if self.lora_down.__class__.__name__ == "Conv2d":
|
63 |
in_dim = self.lora_down.in_channels
|
|
|
173 |
weights_to_modify += self.unet_loras
|
174 |
|
175 |
for lora in self.text_encoder_loras + self.unet_loras:
|
176 |
+
lora.resize(network_dim, network_alpha, scale)
|
177 |
if lora in weights_to_modify:
|
178 |
lora.enable = True
|
179 |
|
180 |
info = self.load_state_dict(weights, False)
|
181 |
+
if len(info.unexpected_keys) > 0:
|
182 |
+
print(f"Weights are loaded. Unexpected keys={info.unexpected_keys}")
|
183 |
+
|
modules/model.py
CHANGED
@@ -185,11 +185,13 @@ class StableDiffusionPipeline(DiffusionPipeline):
|
|
185 |
scheduler=scheduler,
|
186 |
)
|
187 |
self.setup_unet(self.unet)
|
188 |
-
self.
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
193 |
self.prompt_parser.CLIP_stop_at_last_layers = n
|
194 |
|
195 |
def setup_unet(self, unet):
|
|
|
185 |
scheduler=scheduler,
|
186 |
)
|
187 |
self.setup_unet(self.unet)
|
188 |
+
self.setup_text_encoder()
|
189 |
+
|
190 |
+
def setup_text_encoder(self, n=1, new_encoder=None):
|
191 |
+
if new_encoder is not None:
|
192 |
+
self.text_encoder = new_encoder
|
193 |
+
|
194 |
+
self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(self.tokenizer, self.text_encoder)
|
195 |
self.prompt_parser.CLIP_stop_at_last_layers = n
|
196 |
|
197 |
def setup_unet(self, unet):
|