Spaces:
Running
on
T4
Running
on
T4
File size: 36,441 Bytes
43f0396 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 |
import importlib
import inspect
import math
from pathlib import Path
import re
from collections import defaultdict
from typing import List, Optional, Union
import k_diffusion
import numpy as np
import PIL
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser
from modules.prompt_parser import FrozenCLIPEmbedderWithCustomWords
from torch import einsum
from torch.autograd.function import Function
from diffusers import DiffusionPipeline
from diffusers.utils import PIL_INTERPOLATION, is_accelerate_available
from diffusers.utils import logging, randn_tensor
import modules.safe as _
from safetensors.torch import load_file
xformers_available = False
try:
import xformers
xformers_available = True
except ImportError:
pass
EPSILON = 1e-6
exists = lambda val: val is not None
default = lambda val, d: val if exists(val) else d
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def get_attention_scores(attn, query, key, attention_mask=None):
if attn.upcast_attention:
query = query.float()
key = key.float()
attention_scores = torch.baddbmm(
torch.empty(
query.shape[0],
query.shape[1],
key.shape[1],
dtype=query.dtype,
device=query.device,
),
query,
key.transpose(-1, -2),
beta=0,
alpha=attn.scale,
)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
if attn.upcast_softmax:
attention_scores = attention_scores.float()
return attention_scores
def load_lora_attn_procs(model_file, unet, scale=1.0):
if Path(model_file).suffix == ".pt":
state_dict = torch.load(model_file, map_location="cpu")
else:
state_dict = load_file(model_file, device="cpu")
# 'lora_unet_down_blocks_1_attentions_0_transformer_blocks_0_attn1_to_q.lora_down.weight'
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.down.weight'
if any("lora_unet_down_blocks"in k for k in state_dict.keys()):
# extract ldm format lora
df_lora = {}
attn_numlayer = re.compile(r'_attn(\d)_to_([qkv]|out).lora_')
alpha_numlayer = re.compile(r'_attn(\d)_to_([qkv]|out).alpha')
for k, v in state_dict.items():
if "attn" not in k or "lora_te" in k:
# currently not support: ff, clip-attn
continue
k = k.replace("lora_unet_down_blocks_", "down_blocks.")
k = k.replace("lora_unet_up_blocks_", "up_blocks.")
k = k.replace("lora_unet_mid_block_", "mid_block_")
k = k.replace("_attentions_", ".attentions.")
k = k.replace("_transformer_blocks_", ".transformer_blocks.")
k = k.replace("to_out_0", "to_out")
k = attn_numlayer.sub(r'.attn\1.processor.to_\2_lora.', k)
k = alpha_numlayer.sub(r'.attn\1.processor.to_\2_lora.alpha', k)
df_lora[k] = v
state_dict = df_lora
# fill attn processors
attn_processors = {}
is_lora = all("lora" in k for k in state_dict.keys())
if is_lora:
lora_grouped_dict = defaultdict(dict)
for key, value in state_dict.items():
if "alpha" in key:
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
else:
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
lora_grouped_dict[attn_processor_key][sub_key] = value
for key, value_dict in lora_grouped_dict.items():
rank = value_dict["to_k_lora.down.weight"].shape[0]
cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
hidden_size = value_dict["to_k_lora.up.weight"].shape[0]
attn_processors[key] = LoRACrossAttnProcessor(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=rank, scale=scale
)
attn_processors[key].load_state_dict(value_dict, strict=False)
else:
raise ValueError(f"{model_file} does not seem to be in the correct format expected by LoRA training.")
# set correct dtype & device
attn_processors = {k: v.to(device=unet.device, dtype=unet.dtype) for k, v in attn_processors.items()}
# set layers
unet.set_attn_processor(attn_processors)
class CrossAttnProcessor(nn.Module):
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, qkvo_bias=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
encoder_states = hidden_states
is_xattn = False
if encoder_hidden_states is not None:
is_xattn = True
img_state = encoder_hidden_states["img_state"]
encoder_states = encoder_hidden_states["states"]
weight_func = encoder_hidden_states["weight_func"]
sigma = encoder_hidden_states["sigma"]
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_states)
value = attn.to_v(encoder_states)
if qkvo_bias is not None:
query += qkvo_bias["q"](hidden_states)
key += qkvo_bias["k"](encoder_states)
value += qkvo_bias["v"](encoder_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
if is_xattn and isinstance(img_state, dict):
# use torch.baddbmm method (slow)
attention_scores = get_attention_scores(attn, query, key, attention_mask)
w = img_state[sequence_length].to(query.device)
cross_attention_weight = weight_func(w, sigma, attention_scores)
attention_scores += torch.repeat_interleave(cross_attention_weight, repeats=attn.heads, dim=0)
# calc probs
attention_probs = attention_scores.softmax(dim=-1)
attention_probs = attention_probs.to(query.dtype)
hidden_states = torch.bmm(attention_probs, value)
elif xformers_available:
hidden_states = xformers.ops.memory_efficient_attention(
query.contiguous(), key.contiguous(), value.contiguous(), attn_bias=attention_mask
)
hidden_states = hidden_states.to(query.dtype)
else:
q_bucket_size = 512
k_bucket_size = 1024
# use flash-attention
hidden_states = FlashAttentionFunction.apply(
query.contiguous(), key.contiguous(), value.contiguous(),
attention_mask, causal=False, q_bucket_size=q_bucket_size, k_bucket_size=k_bucket_size
)
hidden_states = hidden_states.to(query.dtype)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
if qkvo_bias is not None:
hidden_states += qkvo_bias["o"](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class LoRACrossAttnProcessor(CrossAttnProcessor):
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, scale=1.0):
super().__init__()
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
self.scale = scale
def __call__(
self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None,
):
scale = self.scale
qkvo_bias = {
"q": lambda inputs: scale * self.to_q_lora(inputs),
"k": lambda inputs: scale * self.to_k_lora(inputs),
"v": lambda inputs: scale * self.to_v_lora(inputs),
"o": lambda inputs: scale * self.to_out_lora(inputs),
}
return super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask, qkvo_bias)
class LoRALinearLayer(nn.Module):
def __init__(self, in_features, out_features, rank=4):
super().__init__()
if rank > min(in_features, out_features):
raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}")
self.down = nn.Linear(in_features, rank, bias=False)
self.up = nn.Linear(rank, out_features, bias=False)
self.scale = 1.0
self.alpha = rank
nn.init.normal_(self.down.weight, std=1 / rank)
nn.init.zeros_(self.up.weight)
def forward(self, hidden_states):
orig_dtype = hidden_states.dtype
dtype = self.down.weight.dtype
rank = self.down.out_features
down_hidden_states = self.down(hidden_states.to(dtype))
up_hidden_states = self.up(down_hidden_states) * (self.alpha / rank)
return up_hidden_states.to(orig_dtype)
class ModelWrapper:
def __init__(self, model, alphas_cumprod):
self.model = model
self.alphas_cumprod = alphas_cumprod
def apply_model(self, *args, **kwargs):
if len(args) == 3:
encoder_hidden_states = args[-1]
args = args[:2]
if kwargs.get("cond", None) is not None:
encoder_hidden_states = kwargs.pop("cond")
return self.model(
*args, encoder_hidden_states=encoder_hidden_states, **kwargs
).sample
class StableDiffusionPipeline(DiffusionPipeline):
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae,
text_encoder,
tokenizer,
unet,
scheduler,
):
super().__init__()
# get correct sigmas from LMS
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
)
self.setup_unet(self.unet)
self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(self.tokenizer, self.text_encoder)
def setup_unet(self, unet):
unet = unet.to(self.device)
model = ModelWrapper(unet, self.scheduler.alphas_cumprod)
if self.scheduler.prediction_type == "v_prediction":
self.k_diffusion_model = CompVisVDenoiser(model)
else:
self.k_diffusion_model = CompVisDenoiser(model)
def get_scheduler(self, scheduler_type: str):
library = importlib.import_module("k_diffusion")
sampling = getattr(library, "sampling")
return getattr(sampling, scheduler_type)
def encode_sketchs(self, state, scale_ratio=8, g_strength=1.0, text_ids=None):
uncond, cond = text_ids[0], text_ids[1]
img_state = []
if state is None:
return torch.FloatTensor(0)
for k, v in state.items():
if v["map"] is None:
continue
v_input = self.tokenizer(
k,
max_length=self.tokenizer.model_max_length,
truncation=True,
add_special_tokens=False,
).input_ids
dotmap = v["map"] < 255
arr = torch.from_numpy(dotmap.astype(float) * float(v["weight"]) * g_strength)
img_state.append((v_input, arr))
if len(img_state) == 0:
return torch.FloatTensor(0)
w_tensors = dict()
cond = cond.tolist()
uncond = uncond.tolist()
for layer in self.unet.down_blocks:
c = int(len(cond))
w, h = img_state[0][1].shape
w_r, h_r = w // scale_ratio, h // scale_ratio
ret_cond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32)
ret_uncond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32)
for v_as_tokens, img_where_color in img_state:
is_in = 0
ret = F.interpolate(
img_where_color.unsqueeze(0).unsqueeze(1),
scale_factor=1 / scale_ratio,
mode="bilinear",
align_corners=True,
).squeeze().reshape(-1, 1).repeat(1, len(v_as_tokens))
for idx, tok in enumerate(cond):
if cond[idx : idx + len(v_as_tokens)] == v_as_tokens:
is_in = 1
ret_cond_tensor[0, :, idx : idx + len(v_as_tokens)] += (ret)
for idx, tok in enumerate(uncond):
if uncond[idx : idx + len(v_as_tokens)] == v_as_tokens:
is_in = 1
ret_uncond_tensor[0, :, idx : idx + len(v_as_tokens)] += (ret)
if not is_in == 1:
print(f"tokens {v_as_tokens} not found in text")
w_tensors[w_r * h_r] = torch.cat([ret_uncond_tensor, ret_cond_tensor])
scale_ratio *= 2
return w_tensors
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [
self.unet,
self.text_encoder,
self.vae,
self.safety_checker,
]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def decode_latents(self, latents):
latents = latents.to(self.device, dtype=self.vae.dtype)
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def check_inputs(self, prompt, height, width, callback_steps):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
)
if (callback_steps is None) or (
callback_steps is not None
and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
shape = (batch_size, num_channels_latents, height // 8, width // 8)
if latents is None:
if device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(
shape, generator=generator, device="cpu", dtype=dtype
).to(device)
else:
latents = torch.randn(
shape, generator=generator, device=device, dtype=dtype
)
else:
# if latents.shape != shape:
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
return latents
def preprocess(self, image):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
w, h = image[0].size
w, h = map(lambda x: x - x % 8, (w, h)) # resize to integer multiple of 8
image = [
np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[
None, :
]
for i in image
]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
@torch.no_grad()
def img2img(
self,
prompt: Union[str, List[str]],
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
generator: Optional[torch.Generator] = None,
image: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
latents=None,
strength=1.0,
pww_state=None,
pww_attn_weight=1.0,
sampler_name="",
sampler_opt={},
scale_ratio=8.0
):
sampler = self.get_scheduler(sampler_name)
if image is not None:
image = self.preprocess(image)
image = image.to(self.vae.device, dtype=self.vae.dtype)
init_latents = self.vae.encode(image).latent_dist.sample(generator)
latents = 0.18215 * init_latents
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = True
if guidance_scale <= 1.0:
raise ValueError("has to use guidance_scale")
# 3. Encode input prompt
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
text_embeddings = text_embeddings.to(self.unet.dtype)
init_timestep = int(num_inference_steps / min(strength, 0.999)) if strength > 0 else 0
sigmas = self.get_sigmas(init_timestep, sampler_opt).to(
text_embeddings.device, dtype=text_embeddings.dtype
)
t_start = max(init_timestep - num_inference_steps, 0)
sigma_sched = sigmas[t_start:]
noise = randn_tensor(
latents.shape,
generator=generator,
device=device,
dtype=text_embeddings.dtype,
)
latents = latents.to(device)
latents = latents + noise * sigma_sched[0]
# 5. Prepare latent variables
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
latents.device
)
img_state = self.encode_sketchs(
pww_state,
g_strength=pww_attn_weight,
text_ids=text_ids,
)
def model_fn(x, sigma):
latent_model_input = torch.cat([x] * 2)
weight_func = (
lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
)
encoder_state = {
"img_state": img_state,
"states": text_embeddings,
"sigma": sigma[0],
"weight_func": weight_func,
}
noise_pred = self.k_diffusion_model(
latent_model_input, sigma, cond=encoder_state
)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return noise_pred
sampler_args = self.get_sampler_extra_args_i2i(sigma_sched, sampler)
latents = sampler(model_fn, latents, **sampler_args)
# 8. Post-processing
image = self.decode_latents(latents)
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
return (image,)
def get_sigmas(self, steps, params):
discard_next_to_last_sigma = params.get("discard_next_to_last_sigma", False)
steps += 1 if discard_next_to_last_sigma else 0
if params.get("scheduler", None) == "karras":
sigma_min, sigma_max = (
self.k_diffusion_model.sigmas[0].item(),
self.k_diffusion_model.sigmas[-1].item(),
)
sigmas = k_diffusion.sampling.get_sigmas_karras(
n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device
)
else:
sigmas = self.k_diffusion_model.get_sigmas(steps)
if discard_next_to_last_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
def get_sampler_extra_args_t2i(self, sigmas, eta, steps, func):
extra_params_kwargs = {}
if "eta" in inspect.signature(func).parameters:
extra_params_kwargs["eta"] = eta
if "sigma_min" in inspect.signature(func).parameters:
extra_params_kwargs["sigma_min"] = sigmas[0].item()
extra_params_kwargs["sigma_max"] = sigmas[-1].item()
if "n" in inspect.signature(func).parameters:
extra_params_kwargs["n"] = steps
else:
extra_params_kwargs["sigmas"] = sigmas
return extra_params_kwargs
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
def get_sampler_extra_args_i2i(self, sigmas, func):
extra_params_kwargs = {}
if "sigma_min" in inspect.signature(func).parameters:
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs["sigma_min"] = sigmas[-2]
if "sigma_max" in inspect.signature(func).parameters:
extra_params_kwargs["sigma_max"] = sigmas[0]
if "n" in inspect.signature(func).parameters:
extra_params_kwargs["n"] = len(sigmas) - 1
if "sigma_sched" in inspect.signature(func).parameters:
extra_params_kwargs["sigma_sched"] = sigmas
if "sigmas" in inspect.signature(func).parameters:
extra_params_kwargs["sigmas"] = sigmas
return extra_params_kwargs
@torch.no_grad()
def txt2img(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
callback_steps: Optional[int] = 1,
upscale=False,
upscale_x: float = 2.0,
upscale_method: str = "bicubic",
upscale_antialias: bool = False,
upscale_denoising_strength: int = 0.7,
pww_state=None,
pww_attn_weight=1.0,
sampler_name="",
sampler_opt={},
):
sampler = self.get_scheduler(sampler_name)
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = True
if guidance_scale <= 1.0:
raise ValueError("has to use guidance_scale")
# 3. Encode input prompt
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
text_embeddings = text_embeddings.to(self.unet.dtype)
# 4. Prepare timesteps
sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to(
text_embeddings.device, dtype=text_embeddings.dtype
)
# 5. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size,
num_channels_latents,
height,
width,
text_embeddings.dtype,
device,
generator,
latents,
)
latents = latents * sigmas[0]
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
latents.device
)
img_state = self.encode_sketchs(
pww_state,
g_strength=pww_attn_weight,
text_ids=text_ids,
)
def model_fn(x, sigma):
latent_model_input = torch.cat([x] * 2)
weight_func = (
lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
)
encoder_state = {
"img_state": img_state,
"states": text_embeddings,
"sigma": sigma[0],
"weight_func": weight_func,
}
noise_pred = self.k_diffusion_model(
latent_model_input, sigma, cond=encoder_state
)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return noise_pred
extra_args = self.get_sampler_extra_args_t2i(
sigmas, eta, num_inference_steps, sampler
)
latents = sampler(model_fn, latents, **extra_args)
if upscale:
target_height = height * upscale_x
target_width = width * upscale_x
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
latents = torch.nn.functional.interpolate(
latents,
size=(
int(target_height // vae_scale_factor),
int(target_width // vae_scale_factor),
),
mode=upscale_method,
antialias=upscale_antialias,
)
return self.img2img(
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
generator=generator,
latents=latents,
strength=upscale_denoising_strength,
sampler_name=sampler_name,
sampler_opt=sampler_opt,
pww_state=None,
pww_attn_weight=pww_attn_weight/2,
)
# 8. Post-processing
image = self.decode_latents(latents)
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
return (image,)
class FlashAttentionFunction(Function):
@staticmethod
@torch.no_grad()
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
""" Algorithm 2 in the paper """
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
o = torch.zeros_like(q)
all_row_sums = torch.zeros((*q.shape[:-1], 1), device = device)
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device = device)
scale = (q.shape[-1] ** -0.5)
if not exists(mask):
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
else:
mask = rearrange(mask, 'b n -> b 1 1 n')
mask = mask.split(q_bucket_size, dim = -1)
row_splits = zip(
q.split(q_bucket_size, dim = -2),
o.split(q_bucket_size, dim = -2),
mask,
all_row_sums.split(q_bucket_size, dim = -2),
all_row_maxes.split(q_bucket_size, dim = -2),
)
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim = -2),
v.split(k_bucket_size, dim = -2),
)
for k_ind, (kc, vc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
if exists(row_mask):
attn_weights.masked_fill_(~row_mask, max_neg_value)
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype = torch.bool, device = device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
block_row_maxes = attn_weights.amax(dim = -1, keepdims = True)
attn_weights -= block_row_maxes
exp_weights = torch.exp(attn_weights)
if exists(row_mask):
exp_weights.masked_fill_(~row_mask, 0.)
block_row_sums = exp_weights.sum(dim = -1, keepdims = True).clamp(min = EPSILON)
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc)
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
row_maxes.copy_(new_row_maxes)
row_sums.copy_(new_row_sums)
lse = all_row_sums.log() + all_row_maxes
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
ctx.save_for_backward(q, k, v, o, lse)
return o
@staticmethod
@torch.no_grad()
def backward(ctx, do):
""" Algorithm 4 in the paper """
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
q, k, v, o, lse = ctx.saved_tensors
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
dq = torch.zeros_like(q)
dk = torch.zeros_like(k)
dv = torch.zeros_like(v)
row_splits = zip(
q.split(q_bucket_size, dim = -2),
o.split(q_bucket_size, dim = -2),
do.split(q_bucket_size, dim = -2),
mask,
lse.split(q_bucket_size, dim = -2),
dq.split(q_bucket_size, dim = -2)
)
for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim = -2),
v.split(k_bucket_size, dim = -2),
dk.split(k_bucket_size, dim = -2),
dv.split(k_bucket_size, dim = -2),
)
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype = torch.bool, device = device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
p = torch.exp(attn_weights - lsec)
if exists(row_mask):
p.masked_fill_(~row_mask, 0.)
dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
dp = einsum('... i d, ... j d -> ... i j', doc, vc)
D = (doc * oc).sum(dim = -1, keepdims = True)
ds = p * scale * (dp - D)
dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)
dqc.add_(dq_chunk)
dkc.add_(dk_chunk)
dvc.add_(dv_chunk)
return dq, dk, dv, None, None, None, None |