Spaces:
Running
on
T4
Running
on
T4
Create model.py
Browse files- modules/model.py +963 -0
modules/model.py
ADDED
@@ -0,0 +1,963 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import inspect
|
3 |
+
import math
|
4 |
+
from pathlib import Path
|
5 |
+
import re
|
6 |
+
from collections import defaultdict
|
7 |
+
from typing import List, Optional, Union
|
8 |
+
|
9 |
+
import k_diffusion
|
10 |
+
import numpy as np
|
11 |
+
import PIL
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from einops import rearrange
|
16 |
+
from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser
|
17 |
+
from modules.prompt_parser import FrozenCLIPEmbedderWithCustomWords
|
18 |
+
from torch import einsum
|
19 |
+
from torch.autograd.function import Function
|
20 |
+
|
21 |
+
from diffusers import DiffusionPipeline
|
22 |
+
from diffusers.utils import PIL_INTERPOLATION, is_accelerate_available
|
23 |
+
from diffusers.utils import logging, randn_tensor
|
24 |
+
|
25 |
+
import modules.safe as _
|
26 |
+
from safetensors.torch import load_file
|
27 |
+
|
28 |
+
xformers_available = False
|
29 |
+
try:
|
30 |
+
import xformers
|
31 |
+
xformers_available = True
|
32 |
+
except ImportError:
|
33 |
+
pass
|
34 |
+
|
35 |
+
EPSILON = 1e-6
|
36 |
+
exists = lambda val: val is not None
|
37 |
+
default = lambda val, d: val if exists(val) else d
|
38 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
39 |
+
|
40 |
+
def get_attention_scores(attn, query, key, attention_mask=None):
|
41 |
+
|
42 |
+
if attn.upcast_attention:
|
43 |
+
query = query.float()
|
44 |
+
key = key.float()
|
45 |
+
|
46 |
+
attention_scores = torch.baddbmm(
|
47 |
+
torch.empty(
|
48 |
+
query.shape[0],
|
49 |
+
query.shape[1],
|
50 |
+
key.shape[1],
|
51 |
+
dtype=query.dtype,
|
52 |
+
device=query.device,
|
53 |
+
),
|
54 |
+
query,
|
55 |
+
key.transpose(-1, -2),
|
56 |
+
beta=0,
|
57 |
+
alpha=attn.scale,
|
58 |
+
)
|
59 |
+
|
60 |
+
if attention_mask is not None:
|
61 |
+
attention_scores = attention_scores + attention_mask
|
62 |
+
|
63 |
+
if attn.upcast_softmax:
|
64 |
+
attention_scores = attention_scores.float()
|
65 |
+
|
66 |
+
return attention_scores
|
67 |
+
|
68 |
+
|
69 |
+
def load_lora_attn_procs(model_file, unet, scale=1.0):
|
70 |
+
|
71 |
+
if Path(model_file).suffix == ".pt":
|
72 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
73 |
+
else:
|
74 |
+
state_dict = load_file(model_file, device="cpu")
|
75 |
+
|
76 |
+
# 'lora_unet_down_blocks_1_attentions_0_transformer_blocks_0_attn1_to_q.lora_down.weight'
|
77 |
+
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor.to_q_lora.down.weight'
|
78 |
+
if any("lora_unet_down_blocks"in k for k in state_dict.keys()):
|
79 |
+
# extract ldm format lora
|
80 |
+
df_lora = {}
|
81 |
+
attn_numlayer = re.compile(r'_attn(\d)_to_([qkv]|out).lora_')
|
82 |
+
alpha_numlayer = re.compile(r'_attn(\d)_to_([qkv]|out).alpha')
|
83 |
+
for k, v in state_dict.items():
|
84 |
+
if "attn" not in k or "lora_te" in k:
|
85 |
+
# currently not support: ff, clip-attn
|
86 |
+
continue
|
87 |
+
k = k.replace("lora_unet_down_blocks_", "down_blocks.")
|
88 |
+
k = k.replace("lora_unet_up_blocks_", "up_blocks.")
|
89 |
+
k = k.replace("lora_unet_mid_block_", "mid_block_")
|
90 |
+
k = k.replace("_attentions_", ".attentions.")
|
91 |
+
k = k.replace("_transformer_blocks_", ".transformer_blocks.")
|
92 |
+
k = k.replace("to_out_0", "to_out")
|
93 |
+
k = attn_numlayer.sub(r'.attn\1.processor.to_\2_lora.', k)
|
94 |
+
k = alpha_numlayer.sub(r'.attn\1.processor.to_\2_lora.alpha', k)
|
95 |
+
df_lora[k] = v
|
96 |
+
state_dict = df_lora
|
97 |
+
|
98 |
+
# fill attn processors
|
99 |
+
attn_processors = {}
|
100 |
+
|
101 |
+
is_lora = all("lora" in k for k in state_dict.keys())
|
102 |
+
|
103 |
+
if is_lora:
|
104 |
+
lora_grouped_dict = defaultdict(dict)
|
105 |
+
for key, value in state_dict.items():
|
106 |
+
if "alpha" in key:
|
107 |
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
|
108 |
+
else:
|
109 |
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
|
110 |
+
lora_grouped_dict[attn_processor_key][sub_key] = value
|
111 |
+
|
112 |
+
for key, value_dict in lora_grouped_dict.items():
|
113 |
+
rank = value_dict["to_k_lora.down.weight"].shape[0]
|
114 |
+
cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
|
115 |
+
hidden_size = value_dict["to_k_lora.up.weight"].shape[0]
|
116 |
+
|
117 |
+
attn_processors[key] = LoRACrossAttnProcessor(
|
118 |
+
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=rank, scale=scale
|
119 |
+
)
|
120 |
+
attn_processors[key].load_state_dict(value_dict, strict=False)
|
121 |
+
|
122 |
+
else:
|
123 |
+
raise ValueError(f"{model_file} does not seem to be in the correct format expected by LoRA training.")
|
124 |
+
|
125 |
+
# set correct dtype & device
|
126 |
+
attn_processors = {k: v.to(device=unet.device, dtype=unet.dtype) for k, v in attn_processors.items()}
|
127 |
+
|
128 |
+
# set layers
|
129 |
+
unet.set_attn_processor(attn_processors)
|
130 |
+
|
131 |
+
|
132 |
+
class CrossAttnProcessor(nn.Module):
|
133 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, qkvo_bias=None):
|
134 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
135 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
|
136 |
+
|
137 |
+
encoder_states = hidden_states
|
138 |
+
is_xattn = False
|
139 |
+
if encoder_hidden_states is not None:
|
140 |
+
is_xattn = True
|
141 |
+
img_state = encoder_hidden_states["img_state"]
|
142 |
+
encoder_states = encoder_hidden_states["states"]
|
143 |
+
weight_func = encoder_hidden_states["weight_func"]
|
144 |
+
sigma = encoder_hidden_states["sigma"]
|
145 |
+
|
146 |
+
query = attn.to_q(hidden_states)
|
147 |
+
key = attn.to_k(encoder_states)
|
148 |
+
value = attn.to_v(encoder_states)
|
149 |
+
|
150 |
+
if qkvo_bias is not None:
|
151 |
+
query += qkvo_bias["q"](hidden_states)
|
152 |
+
key += qkvo_bias["k"](encoder_states)
|
153 |
+
value += qkvo_bias["v"](encoder_states)
|
154 |
+
|
155 |
+
query = attn.head_to_batch_dim(query)
|
156 |
+
key = attn.head_to_batch_dim(key)
|
157 |
+
value = attn.head_to_batch_dim(value)
|
158 |
+
|
159 |
+
if is_xattn and isinstance(img_state, dict):
|
160 |
+
# use torch.baddbmm method (slow)
|
161 |
+
attention_scores = get_attention_scores(attn, query, key, attention_mask)
|
162 |
+
w = img_state[sequence_length].to(query.device)
|
163 |
+
cross_attention_weight = weight_func(w, sigma, attention_scores)
|
164 |
+
attention_scores += torch.repeat_interleave(cross_attention_weight, repeats=attn.heads, dim=0)
|
165 |
+
|
166 |
+
# calc probs
|
167 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
168 |
+
attention_probs = attention_probs.to(query.dtype)
|
169 |
+
hidden_states = torch.bmm(attention_probs, value)
|
170 |
+
|
171 |
+
elif xformers_available:
|
172 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
173 |
+
query.contiguous(), key.contiguous(), value.contiguous(), attn_bias=attention_mask
|
174 |
+
)
|
175 |
+
hidden_states = hidden_states.to(query.dtype)
|
176 |
+
|
177 |
+
else:
|
178 |
+
q_bucket_size = 512
|
179 |
+
k_bucket_size = 1024
|
180 |
+
|
181 |
+
# use flash-attention
|
182 |
+
hidden_states = FlashAttentionFunction.apply(
|
183 |
+
query.contiguous(), key.contiguous(), value.contiguous(),
|
184 |
+
attention_mask, causal=False, q_bucket_size=q_bucket_size, k_bucket_size=k_bucket_size
|
185 |
+
)
|
186 |
+
hidden_states = hidden_states.to(query.dtype)
|
187 |
+
|
188 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
189 |
+
|
190 |
+
# linear proj
|
191 |
+
hidden_states = attn.to_out[0](hidden_states)
|
192 |
+
|
193 |
+
if qkvo_bias is not None:
|
194 |
+
hidden_states += qkvo_bias["o"](hidden_states)
|
195 |
+
|
196 |
+
# dropout
|
197 |
+
hidden_states = attn.to_out[1](hidden_states)
|
198 |
+
|
199 |
+
return hidden_states
|
200 |
+
|
201 |
+
|
202 |
+
class LoRACrossAttnProcessor(CrossAttnProcessor):
|
203 |
+
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, scale=1.0):
|
204 |
+
super().__init__()
|
205 |
+
|
206 |
+
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
|
207 |
+
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
|
208 |
+
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
|
209 |
+
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
|
210 |
+
self.scale = scale
|
211 |
+
|
212 |
+
def __call__(
|
213 |
+
self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None,
|
214 |
+
):
|
215 |
+
scale = self.scale
|
216 |
+
qkvo_bias = {
|
217 |
+
"q": lambda inputs: scale * self.to_q_lora(inputs),
|
218 |
+
"k": lambda inputs: scale * self.to_k_lora(inputs),
|
219 |
+
"v": lambda inputs: scale * self.to_v_lora(inputs),
|
220 |
+
"o": lambda inputs: scale * self.to_out_lora(inputs),
|
221 |
+
}
|
222 |
+
return super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask, qkvo_bias)
|
223 |
+
|
224 |
+
|
225 |
+
class LoRALinearLayer(nn.Module):
|
226 |
+
def __init__(self, in_features, out_features, rank=4):
|
227 |
+
super().__init__()
|
228 |
+
|
229 |
+
if rank > min(in_features, out_features):
|
230 |
+
raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}")
|
231 |
+
|
232 |
+
self.down = nn.Linear(in_features, rank, bias=False)
|
233 |
+
self.up = nn.Linear(rank, out_features, bias=False)
|
234 |
+
self.scale = 1.0
|
235 |
+
self.alpha = rank
|
236 |
+
|
237 |
+
nn.init.normal_(self.down.weight, std=1 / rank)
|
238 |
+
nn.init.zeros_(self.up.weight)
|
239 |
+
|
240 |
+
def forward(self, hidden_states):
|
241 |
+
orig_dtype = hidden_states.dtype
|
242 |
+
dtype = self.down.weight.dtype
|
243 |
+
rank = self.down.out_features
|
244 |
+
|
245 |
+
down_hidden_states = self.down(hidden_states.to(dtype))
|
246 |
+
up_hidden_states = self.up(down_hidden_states) * (self.alpha / rank)
|
247 |
+
|
248 |
+
return up_hidden_states.to(orig_dtype)
|
249 |
+
|
250 |
+
|
251 |
+
class ModelWrapper:
|
252 |
+
def __init__(self, model, alphas_cumprod):
|
253 |
+
self.model = model
|
254 |
+
self.alphas_cumprod = alphas_cumprod
|
255 |
+
|
256 |
+
def apply_model(self, *args, **kwargs):
|
257 |
+
if len(args) == 3:
|
258 |
+
encoder_hidden_states = args[-1]
|
259 |
+
args = args[:2]
|
260 |
+
if kwargs.get("cond", None) is not None:
|
261 |
+
encoder_hidden_states = kwargs.pop("cond")
|
262 |
+
return self.model(
|
263 |
+
*args, encoder_hidden_states=encoder_hidden_states, **kwargs
|
264 |
+
).sample
|
265 |
+
|
266 |
+
|
267 |
+
class StableDiffusionPipeline(DiffusionPipeline):
|
268 |
+
|
269 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
270 |
+
|
271 |
+
def __init__(
|
272 |
+
self,
|
273 |
+
vae,
|
274 |
+
text_encoder,
|
275 |
+
tokenizer,
|
276 |
+
unet,
|
277 |
+
scheduler,
|
278 |
+
):
|
279 |
+
super().__init__()
|
280 |
+
|
281 |
+
# get correct sigmas from LMS
|
282 |
+
self.register_modules(
|
283 |
+
vae=vae,
|
284 |
+
text_encoder=text_encoder,
|
285 |
+
tokenizer=tokenizer,
|
286 |
+
unet=unet,
|
287 |
+
scheduler=scheduler,
|
288 |
+
)
|
289 |
+
self.setup_unet(self.unet)
|
290 |
+
self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(self.tokenizer, self.text_encoder)
|
291 |
+
|
292 |
+
def setup_unet(self, unet):
|
293 |
+
unet = unet.to(self.device)
|
294 |
+
model = ModelWrapper(unet, self.scheduler.alphas_cumprod)
|
295 |
+
if self.scheduler.prediction_type == "v_prediction":
|
296 |
+
self.k_diffusion_model = CompVisVDenoiser(model)
|
297 |
+
else:
|
298 |
+
self.k_diffusion_model = CompVisDenoiser(model)
|
299 |
+
|
300 |
+
def get_scheduler(self, scheduler_type: str):
|
301 |
+
library = importlib.import_module("k_diffusion")
|
302 |
+
sampling = getattr(library, "sampling")
|
303 |
+
return getattr(sampling, scheduler_type)
|
304 |
+
|
305 |
+
def encode_sketchs(self, state, scale_ratio=8, g_strength=1.0, text_ids=None):
|
306 |
+
uncond, cond = text_ids[0], text_ids[1]
|
307 |
+
|
308 |
+
img_state = []
|
309 |
+
if state is None:
|
310 |
+
return torch.FloatTensor(0)
|
311 |
+
|
312 |
+
for k, v in state.items():
|
313 |
+
if v["map"] is None:
|
314 |
+
continue
|
315 |
+
|
316 |
+
v_input = self.tokenizer(
|
317 |
+
k,
|
318 |
+
max_length=self.tokenizer.model_max_length,
|
319 |
+
truncation=True,
|
320 |
+
add_special_tokens=False,
|
321 |
+
).input_ids
|
322 |
+
|
323 |
+
dotmap = v["map"] < 255
|
324 |
+
arr = torch.from_numpy(dotmap.astype(float) * float(v["weight"]) * g_strength)
|
325 |
+
img_state.append((v_input, arr))
|
326 |
+
|
327 |
+
if len(img_state) == 0:
|
328 |
+
return torch.FloatTensor(0)
|
329 |
+
|
330 |
+
w_tensors = dict()
|
331 |
+
cond = cond.tolist()
|
332 |
+
uncond = uncond.tolist()
|
333 |
+
for layer in self.unet.down_blocks:
|
334 |
+
c = int(len(cond))
|
335 |
+
w, h = img_state[0][1].shape
|
336 |
+
w_r, h_r = w // scale_ratio, h // scale_ratio
|
337 |
+
|
338 |
+
ret_cond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32)
|
339 |
+
ret_uncond_tensor = torch.zeros((1, int(w_r * h_r), c), dtype=torch.float32)
|
340 |
+
|
341 |
+
for v_as_tokens, img_where_color in img_state:
|
342 |
+
is_in = 0
|
343 |
+
|
344 |
+
ret = F.interpolate(
|
345 |
+
img_where_color.unsqueeze(0).unsqueeze(1),
|
346 |
+
scale_factor=1 / scale_ratio,
|
347 |
+
mode="bilinear",
|
348 |
+
align_corners=True,
|
349 |
+
).squeeze().reshape(-1, 1).repeat(1, len(v_as_tokens))
|
350 |
+
|
351 |
+
for idx, tok in enumerate(cond):
|
352 |
+
if cond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
353 |
+
is_in = 1
|
354 |
+
ret_cond_tensor[0, :, idx : idx + len(v_as_tokens)] += (ret)
|
355 |
+
|
356 |
+
for idx, tok in enumerate(uncond):
|
357 |
+
if uncond[idx : idx + len(v_as_tokens)] == v_as_tokens:
|
358 |
+
is_in = 1
|
359 |
+
ret_uncond_tensor[0, :, idx : idx + len(v_as_tokens)] += (ret)
|
360 |
+
|
361 |
+
if not is_in == 1:
|
362 |
+
print(f"tokens {v_as_tokens} not found in text")
|
363 |
+
|
364 |
+
w_tensors[w_r * h_r] = torch.cat([ret_uncond_tensor, ret_cond_tensor])
|
365 |
+
scale_ratio *= 2
|
366 |
+
|
367 |
+
return w_tensors
|
368 |
+
|
369 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
370 |
+
r"""
|
371 |
+
Enable sliced attention computation.
|
372 |
+
|
373 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
374 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
375 |
+
|
376 |
+
Args:
|
377 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
378 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
379 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
380 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
381 |
+
"""
|
382 |
+
if slice_size == "auto":
|
383 |
+
# half the attention head size is usually a good trade-off between
|
384 |
+
# speed and memory
|
385 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
386 |
+
self.unet.set_attention_slice(slice_size)
|
387 |
+
|
388 |
+
def disable_attention_slicing(self):
|
389 |
+
r"""
|
390 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
391 |
+
back to computing attention in one step.
|
392 |
+
"""
|
393 |
+
# set slice_size = `None` to disable `attention slicing`
|
394 |
+
self.enable_attention_slicing(None)
|
395 |
+
|
396 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
397 |
+
r"""
|
398 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
399 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
400 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
401 |
+
"""
|
402 |
+
if is_accelerate_available():
|
403 |
+
from accelerate import cpu_offload
|
404 |
+
else:
|
405 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
406 |
+
|
407 |
+
device = torch.device(f"cuda:{gpu_id}")
|
408 |
+
|
409 |
+
for cpu_offloaded_model in [
|
410 |
+
self.unet,
|
411 |
+
self.text_encoder,
|
412 |
+
self.vae,
|
413 |
+
self.safety_checker,
|
414 |
+
]:
|
415 |
+
if cpu_offloaded_model is not None:
|
416 |
+
cpu_offload(cpu_offloaded_model, device)
|
417 |
+
|
418 |
+
@property
|
419 |
+
def _execution_device(self):
|
420 |
+
r"""
|
421 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
422 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
423 |
+
hooks.
|
424 |
+
"""
|
425 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
426 |
+
return self.device
|
427 |
+
for module in self.unet.modules():
|
428 |
+
if (
|
429 |
+
hasattr(module, "_hf_hook")
|
430 |
+
and hasattr(module._hf_hook, "execution_device")
|
431 |
+
and module._hf_hook.execution_device is not None
|
432 |
+
):
|
433 |
+
return torch.device(module._hf_hook.execution_device)
|
434 |
+
return self.device
|
435 |
+
|
436 |
+
def decode_latents(self, latents):
|
437 |
+
latents = latents.to(self.device, dtype=self.vae.dtype)
|
438 |
+
latents = 1 / 0.18215 * latents
|
439 |
+
image = self.vae.decode(latents).sample
|
440 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
441 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
442 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
443 |
+
return image
|
444 |
+
|
445 |
+
def check_inputs(self, prompt, height, width, callback_steps):
|
446 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
447 |
+
raise ValueError(
|
448 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
449 |
+
)
|
450 |
+
|
451 |
+
if height % 8 != 0 or width % 8 != 0:
|
452 |
+
raise ValueError(
|
453 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
454 |
+
)
|
455 |
+
|
456 |
+
if (callback_steps is None) or (
|
457 |
+
callback_steps is not None
|
458 |
+
and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
459 |
+
):
|
460 |
+
raise ValueError(
|
461 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
462 |
+
f" {type(callback_steps)}."
|
463 |
+
)
|
464 |
+
|
465 |
+
def prepare_latents(
|
466 |
+
self,
|
467 |
+
batch_size,
|
468 |
+
num_channels_latents,
|
469 |
+
height,
|
470 |
+
width,
|
471 |
+
dtype,
|
472 |
+
device,
|
473 |
+
generator,
|
474 |
+
latents=None,
|
475 |
+
):
|
476 |
+
shape = (batch_size, num_channels_latents, height // 8, width // 8)
|
477 |
+
if latents is None:
|
478 |
+
if device.type == "mps":
|
479 |
+
# randn does not work reproducibly on mps
|
480 |
+
latents = torch.randn(
|
481 |
+
shape, generator=generator, device="cpu", dtype=dtype
|
482 |
+
).to(device)
|
483 |
+
else:
|
484 |
+
latents = torch.randn(
|
485 |
+
shape, generator=generator, device=device, dtype=dtype
|
486 |
+
)
|
487 |
+
else:
|
488 |
+
# if latents.shape != shape:
|
489 |
+
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
490 |
+
latents = latents.to(device)
|
491 |
+
|
492 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
493 |
+
return latents
|
494 |
+
|
495 |
+
def preprocess(self, image):
|
496 |
+
if isinstance(image, torch.Tensor):
|
497 |
+
return image
|
498 |
+
elif isinstance(image, PIL.Image.Image):
|
499 |
+
image = [image]
|
500 |
+
|
501 |
+
if isinstance(image[0], PIL.Image.Image):
|
502 |
+
w, h = image[0].size
|
503 |
+
w, h = map(lambda x: x - x % 8, (w, h)) # resize to integer multiple of 8
|
504 |
+
|
505 |
+
image = [
|
506 |
+
np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[
|
507 |
+
None, :
|
508 |
+
]
|
509 |
+
for i in image
|
510 |
+
]
|
511 |
+
image = np.concatenate(image, axis=0)
|
512 |
+
image = np.array(image).astype(np.float32) / 255.0
|
513 |
+
image = image.transpose(0, 3, 1, 2)
|
514 |
+
image = 2.0 * image - 1.0
|
515 |
+
image = torch.from_numpy(image)
|
516 |
+
elif isinstance(image[0], torch.Tensor):
|
517 |
+
image = torch.cat(image, dim=0)
|
518 |
+
return image
|
519 |
+
|
520 |
+
@torch.no_grad()
|
521 |
+
def img2img(
|
522 |
+
self,
|
523 |
+
prompt: Union[str, List[str]],
|
524 |
+
num_inference_steps: int = 50,
|
525 |
+
guidance_scale: float = 7.5,
|
526 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
527 |
+
generator: Optional[torch.Generator] = None,
|
528 |
+
image: Optional[torch.FloatTensor] = None,
|
529 |
+
output_type: Optional[str] = "pil",
|
530 |
+
latents=None,
|
531 |
+
strength=1.0,
|
532 |
+
pww_state=None,
|
533 |
+
pww_attn_weight=1.0,
|
534 |
+
sampler_name="",
|
535 |
+
sampler_opt={},
|
536 |
+
scale_ratio=8.0
|
537 |
+
):
|
538 |
+
sampler = self.get_scheduler(sampler_name)
|
539 |
+
if image is not None:
|
540 |
+
image = self.preprocess(image)
|
541 |
+
image = image.to(self.vae.device, dtype=self.vae.dtype)
|
542 |
+
|
543 |
+
init_latents = self.vae.encode(image).latent_dist.sample(generator)
|
544 |
+
latents = 0.18215 * init_latents
|
545 |
+
|
546 |
+
# 2. Define call parameters
|
547 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
548 |
+
device = self._execution_device
|
549 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
550 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
551 |
+
# corresponds to doing no classifier free guidance.
|
552 |
+
do_classifier_free_guidance = True
|
553 |
+
if guidance_scale <= 1.0:
|
554 |
+
raise ValueError("has to use guidance_scale")
|
555 |
+
|
556 |
+
# 3. Encode input prompt
|
557 |
+
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
|
558 |
+
text_embeddings = text_embeddings.to(self.unet.dtype)
|
559 |
+
|
560 |
+
init_timestep = int(num_inference_steps / min(strength, 0.999)) if strength > 0 else 0
|
561 |
+
sigmas = self.get_sigmas(init_timestep, sampler_opt).to(
|
562 |
+
text_embeddings.device, dtype=text_embeddings.dtype
|
563 |
+
)
|
564 |
+
|
565 |
+
t_start = max(init_timestep - num_inference_steps, 0)
|
566 |
+
sigma_sched = sigmas[t_start:]
|
567 |
+
|
568 |
+
noise = randn_tensor(
|
569 |
+
latents.shape,
|
570 |
+
generator=generator,
|
571 |
+
device=device,
|
572 |
+
dtype=text_embeddings.dtype,
|
573 |
+
)
|
574 |
+
latents = latents.to(device)
|
575 |
+
latents = latents + noise * sigma_sched[0]
|
576 |
+
|
577 |
+
# 5. Prepare latent variables
|
578 |
+
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
579 |
+
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
|
580 |
+
latents.device
|
581 |
+
)
|
582 |
+
|
583 |
+
img_state = self.encode_sketchs(
|
584 |
+
pww_state,
|
585 |
+
g_strength=pww_attn_weight,
|
586 |
+
text_ids=text_ids,
|
587 |
+
)
|
588 |
+
|
589 |
+
def model_fn(x, sigma):
|
590 |
+
|
591 |
+
latent_model_input = torch.cat([x] * 2)
|
592 |
+
weight_func = (
|
593 |
+
lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
|
594 |
+
)
|
595 |
+
encoder_state = {
|
596 |
+
"img_state": img_state,
|
597 |
+
"states": text_embeddings,
|
598 |
+
"sigma": sigma[0],
|
599 |
+
"weight_func": weight_func,
|
600 |
+
}
|
601 |
+
|
602 |
+
noise_pred = self.k_diffusion_model(
|
603 |
+
latent_model_input, sigma, cond=encoder_state
|
604 |
+
)
|
605 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
606 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
607 |
+
noise_pred_text - noise_pred_uncond
|
608 |
+
)
|
609 |
+
return noise_pred
|
610 |
+
|
611 |
+
sampler_args = self.get_sampler_extra_args_i2i(sigma_sched, sampler)
|
612 |
+
latents = sampler(model_fn, latents, **sampler_args)
|
613 |
+
|
614 |
+
# 8. Post-processing
|
615 |
+
image = self.decode_latents(latents)
|
616 |
+
|
617 |
+
# 10. Convert to PIL
|
618 |
+
if output_type == "pil":
|
619 |
+
image = self.numpy_to_pil(image)
|
620 |
+
|
621 |
+
return (image,)
|
622 |
+
|
623 |
+
def get_sigmas(self, steps, params):
|
624 |
+
discard_next_to_last_sigma = params.get("discard_next_to_last_sigma", False)
|
625 |
+
steps += 1 if discard_next_to_last_sigma else 0
|
626 |
+
|
627 |
+
if params.get("scheduler", None) == "karras":
|
628 |
+
sigma_min, sigma_max = (
|
629 |
+
self.k_diffusion_model.sigmas[0].item(),
|
630 |
+
self.k_diffusion_model.sigmas[-1].item(),
|
631 |
+
)
|
632 |
+
sigmas = k_diffusion.sampling.get_sigmas_karras(
|
633 |
+
n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device
|
634 |
+
)
|
635 |
+
else:
|
636 |
+
sigmas = self.k_diffusion_model.get_sigmas(steps)
|
637 |
+
|
638 |
+
if discard_next_to_last_sigma:
|
639 |
+
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
640 |
+
|
641 |
+
return sigmas
|
642 |
+
|
643 |
+
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
|
644 |
+
def get_sampler_extra_args_t2i(self, sigmas, eta, steps, func):
|
645 |
+
extra_params_kwargs = {}
|
646 |
+
|
647 |
+
if "eta" in inspect.signature(func).parameters:
|
648 |
+
extra_params_kwargs["eta"] = eta
|
649 |
+
|
650 |
+
if "sigma_min" in inspect.signature(func).parameters:
|
651 |
+
extra_params_kwargs["sigma_min"] = sigmas[0].item()
|
652 |
+
extra_params_kwargs["sigma_max"] = sigmas[-1].item()
|
653 |
+
|
654 |
+
if "n" in inspect.signature(func).parameters:
|
655 |
+
extra_params_kwargs["n"] = steps
|
656 |
+
else:
|
657 |
+
extra_params_kwargs["sigmas"] = sigmas
|
658 |
+
|
659 |
+
return extra_params_kwargs
|
660 |
+
|
661 |
+
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
|
662 |
+
def get_sampler_extra_args_i2i(self, sigmas, func):
|
663 |
+
extra_params_kwargs = {}
|
664 |
+
|
665 |
+
if "sigma_min" in inspect.signature(func).parameters:
|
666 |
+
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
|
667 |
+
extra_params_kwargs["sigma_min"] = sigmas[-2]
|
668 |
+
|
669 |
+
if "sigma_max" in inspect.signature(func).parameters:
|
670 |
+
extra_params_kwargs["sigma_max"] = sigmas[0]
|
671 |
+
|
672 |
+
if "n" in inspect.signature(func).parameters:
|
673 |
+
extra_params_kwargs["n"] = len(sigmas) - 1
|
674 |
+
|
675 |
+
if "sigma_sched" in inspect.signature(func).parameters:
|
676 |
+
extra_params_kwargs["sigma_sched"] = sigmas
|
677 |
+
|
678 |
+
if "sigmas" in inspect.signature(func).parameters:
|
679 |
+
extra_params_kwargs["sigmas"] = sigmas
|
680 |
+
|
681 |
+
return extra_params_kwargs
|
682 |
+
|
683 |
+
@torch.no_grad()
|
684 |
+
def txt2img(
|
685 |
+
self,
|
686 |
+
prompt: Union[str, List[str]],
|
687 |
+
height: int = 512,
|
688 |
+
width: int = 512,
|
689 |
+
num_inference_steps: int = 50,
|
690 |
+
guidance_scale: float = 7.5,
|
691 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
692 |
+
eta: float = 0.0,
|
693 |
+
generator: Optional[torch.Generator] = None,
|
694 |
+
latents: Optional[torch.FloatTensor] = None,
|
695 |
+
output_type: Optional[str] = "pil",
|
696 |
+
callback_steps: Optional[int] = 1,
|
697 |
+
upscale=False,
|
698 |
+
upscale_x: float = 2.0,
|
699 |
+
upscale_method: str = "bicubic",
|
700 |
+
upscale_antialias: bool = False,
|
701 |
+
upscale_denoising_strength: int = 0.7,
|
702 |
+
pww_state=None,
|
703 |
+
pww_attn_weight=1.0,
|
704 |
+
sampler_name="",
|
705 |
+
sampler_opt={},
|
706 |
+
):
|
707 |
+
sampler = self.get_scheduler(sampler_name)
|
708 |
+
# 1. Check inputs. Raise error if not correct
|
709 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
710 |
+
|
711 |
+
# 2. Define call parameters
|
712 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
713 |
+
device = self._execution_device
|
714 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
715 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
716 |
+
# corresponds to doing no classifier free guidance.
|
717 |
+
do_classifier_free_guidance = True
|
718 |
+
if guidance_scale <= 1.0:
|
719 |
+
raise ValueError("has to use guidance_scale")
|
720 |
+
|
721 |
+
# 3. Encode input prompt
|
722 |
+
text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
|
723 |
+
text_embeddings = text_embeddings.to(self.unet.dtype)
|
724 |
+
|
725 |
+
# 4. Prepare timesteps
|
726 |
+
sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to(
|
727 |
+
text_embeddings.device, dtype=text_embeddings.dtype
|
728 |
+
)
|
729 |
+
|
730 |
+
# 5. Prepare latent variables
|
731 |
+
num_channels_latents = self.unet.in_channels
|
732 |
+
latents = self.prepare_latents(
|
733 |
+
batch_size,
|
734 |
+
num_channels_latents,
|
735 |
+
height,
|
736 |
+
width,
|
737 |
+
text_embeddings.dtype,
|
738 |
+
device,
|
739 |
+
generator,
|
740 |
+
latents,
|
741 |
+
)
|
742 |
+
latents = latents * sigmas[0]
|
743 |
+
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
744 |
+
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
|
745 |
+
latents.device
|
746 |
+
)
|
747 |
+
|
748 |
+
img_state = self.encode_sketchs(
|
749 |
+
pww_state,
|
750 |
+
g_strength=pww_attn_weight,
|
751 |
+
text_ids=text_ids,
|
752 |
+
)
|
753 |
+
|
754 |
+
def model_fn(x, sigma):
|
755 |
+
|
756 |
+
latent_model_input = torch.cat([x] * 2)
|
757 |
+
weight_func = (
|
758 |
+
lambda w, sigma, qk: w * math.log(1 + sigma) * qk.max()
|
759 |
+
)
|
760 |
+
encoder_state = {
|
761 |
+
"img_state": img_state,
|
762 |
+
"states": text_embeddings,
|
763 |
+
"sigma": sigma[0],
|
764 |
+
"weight_func": weight_func,
|
765 |
+
}
|
766 |
+
|
767 |
+
noise_pred = self.k_diffusion_model(
|
768 |
+
latent_model_input, sigma, cond=encoder_state
|
769 |
+
)
|
770 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
771 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
772 |
+
noise_pred_text - noise_pred_uncond
|
773 |
+
)
|
774 |
+
return noise_pred
|
775 |
+
|
776 |
+
extra_args = self.get_sampler_extra_args_t2i(
|
777 |
+
sigmas, eta, num_inference_steps, sampler
|
778 |
+
)
|
779 |
+
latents = sampler(model_fn, latents, **extra_args)
|
780 |
+
|
781 |
+
if upscale:
|
782 |
+
target_height = height * upscale_x
|
783 |
+
target_width = width * upscale_x
|
784 |
+
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
785 |
+
latents = torch.nn.functional.interpolate(
|
786 |
+
latents,
|
787 |
+
size=(
|
788 |
+
int(target_height // vae_scale_factor),
|
789 |
+
int(target_width // vae_scale_factor),
|
790 |
+
),
|
791 |
+
mode=upscale_method,
|
792 |
+
antialias=upscale_antialias,
|
793 |
+
)
|
794 |
+
return self.img2img(
|
795 |
+
prompt=prompt,
|
796 |
+
num_inference_steps=num_inference_steps,
|
797 |
+
guidance_scale=guidance_scale,
|
798 |
+
negative_prompt=negative_prompt,
|
799 |
+
generator=generator,
|
800 |
+
latents=latents,
|
801 |
+
strength=upscale_denoising_strength,
|
802 |
+
sampler_name=sampler_name,
|
803 |
+
sampler_opt=sampler_opt,
|
804 |
+
pww_state=None,
|
805 |
+
pww_attn_weight=pww_attn_weight/2,
|
806 |
+
)
|
807 |
+
|
808 |
+
# 8. Post-processing
|
809 |
+
image = self.decode_latents(latents)
|
810 |
+
|
811 |
+
# 10. Convert to PIL
|
812 |
+
if output_type == "pil":
|
813 |
+
image = self.numpy_to_pil(image)
|
814 |
+
|
815 |
+
return (image,)
|
816 |
+
|
817 |
+
|
818 |
+
class FlashAttentionFunction(Function):
|
819 |
+
|
820 |
+
|
821 |
+
@staticmethod
|
822 |
+
@torch.no_grad()
|
823 |
+
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
824 |
+
""" Algorithm 2 in the paper """
|
825 |
+
|
826 |
+
device = q.device
|
827 |
+
max_neg_value = -torch.finfo(q.dtype).max
|
828 |
+
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
829 |
+
|
830 |
+
o = torch.zeros_like(q)
|
831 |
+
all_row_sums = torch.zeros((*q.shape[:-1], 1), device = device)
|
832 |
+
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device = device)
|
833 |
+
|
834 |
+
scale = (q.shape[-1] ** -0.5)
|
835 |
+
|
836 |
+
if not exists(mask):
|
837 |
+
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
838 |
+
else:
|
839 |
+
mask = rearrange(mask, 'b n -> b 1 1 n')
|
840 |
+
mask = mask.split(q_bucket_size, dim = -1)
|
841 |
+
|
842 |
+
row_splits = zip(
|
843 |
+
q.split(q_bucket_size, dim = -2),
|
844 |
+
o.split(q_bucket_size, dim = -2),
|
845 |
+
mask,
|
846 |
+
all_row_sums.split(q_bucket_size, dim = -2),
|
847 |
+
all_row_maxes.split(q_bucket_size, dim = -2),
|
848 |
+
)
|
849 |
+
|
850 |
+
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
851 |
+
q_start_index = ind * q_bucket_size - qk_len_diff
|
852 |
+
|
853 |
+
col_splits = zip(
|
854 |
+
k.split(k_bucket_size, dim = -2),
|
855 |
+
v.split(k_bucket_size, dim = -2),
|
856 |
+
)
|
857 |
+
|
858 |
+
for k_ind, (kc, vc) in enumerate(col_splits):
|
859 |
+
k_start_index = k_ind * k_bucket_size
|
860 |
+
|
861 |
+
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
|
862 |
+
|
863 |
+
if exists(row_mask):
|
864 |
+
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
865 |
+
|
866 |
+
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
867 |
+
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype = torch.bool, device = device).triu(q_start_index - k_start_index + 1)
|
868 |
+
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
869 |
+
|
870 |
+
block_row_maxes = attn_weights.amax(dim = -1, keepdims = True)
|
871 |
+
attn_weights -= block_row_maxes
|
872 |
+
exp_weights = torch.exp(attn_weights)
|
873 |
+
|
874 |
+
if exists(row_mask):
|
875 |
+
exp_weights.masked_fill_(~row_mask, 0.)
|
876 |
+
|
877 |
+
block_row_sums = exp_weights.sum(dim = -1, keepdims = True).clamp(min = EPSILON)
|
878 |
+
|
879 |
+
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
880 |
+
|
881 |
+
exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc)
|
882 |
+
|
883 |
+
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
884 |
+
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
885 |
+
|
886 |
+
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
|
887 |
+
|
888 |
+
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
|
889 |
+
|
890 |
+
row_maxes.copy_(new_row_maxes)
|
891 |
+
row_sums.copy_(new_row_sums)
|
892 |
+
|
893 |
+
lse = all_row_sums.log() + all_row_maxes
|
894 |
+
|
895 |
+
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
|
896 |
+
ctx.save_for_backward(q, k, v, o, lse)
|
897 |
+
|
898 |
+
return o
|
899 |
+
|
900 |
+
@staticmethod
|
901 |
+
@torch.no_grad()
|
902 |
+
def backward(ctx, do):
|
903 |
+
""" Algorithm 4 in the paper """
|
904 |
+
|
905 |
+
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
906 |
+
q, k, v, o, lse = ctx.saved_tensors
|
907 |
+
|
908 |
+
device = q.device
|
909 |
+
|
910 |
+
max_neg_value = -torch.finfo(q.dtype).max
|
911 |
+
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
912 |
+
|
913 |
+
dq = torch.zeros_like(q)
|
914 |
+
dk = torch.zeros_like(k)
|
915 |
+
dv = torch.zeros_like(v)
|
916 |
+
|
917 |
+
row_splits = zip(
|
918 |
+
q.split(q_bucket_size, dim = -2),
|
919 |
+
o.split(q_bucket_size, dim = -2),
|
920 |
+
do.split(q_bucket_size, dim = -2),
|
921 |
+
mask,
|
922 |
+
lse.split(q_bucket_size, dim = -2),
|
923 |
+
dq.split(q_bucket_size, dim = -2)
|
924 |
+
)
|
925 |
+
|
926 |
+
for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits):
|
927 |
+
q_start_index = ind * q_bucket_size - qk_len_diff
|
928 |
+
|
929 |
+
col_splits = zip(
|
930 |
+
k.split(k_bucket_size, dim = -2),
|
931 |
+
v.split(k_bucket_size, dim = -2),
|
932 |
+
dk.split(k_bucket_size, dim = -2),
|
933 |
+
dv.split(k_bucket_size, dim = -2),
|
934 |
+
)
|
935 |
+
|
936 |
+
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
937 |
+
k_start_index = k_ind * k_bucket_size
|
938 |
+
|
939 |
+
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
|
940 |
+
|
941 |
+
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
942 |
+
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype = torch.bool, device = device).triu(q_start_index - k_start_index + 1)
|
943 |
+
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
944 |
+
|
945 |
+
p = torch.exp(attn_weights - lsec)
|
946 |
+
|
947 |
+
if exists(row_mask):
|
948 |
+
p.masked_fill_(~row_mask, 0.)
|
949 |
+
|
950 |
+
dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
|
951 |
+
dp = einsum('... i d, ... j d -> ... i j', doc, vc)
|
952 |
+
|
953 |
+
D = (doc * oc).sum(dim = -1, keepdims = True)
|
954 |
+
ds = p * scale * (dp - D)
|
955 |
+
|
956 |
+
dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
|
957 |
+
dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)
|
958 |
+
|
959 |
+
dqc.add_(dq_chunk)
|
960 |
+
dkc.add_(dk_chunk)
|
961 |
+
dvc.add_(dv_chunk)
|
962 |
+
|
963 |
+
return dq, dk, dv, None, None, None, None
|